38 research outputs found

    Influence of different types of superplasticizers on one-part alkali- activated slag mortars

    Get PDF
    This paper presents an experimental study carried out to investigate the influence of different types of superplasticizers on the fresh and hardened properties of one-part alkali-activated slag mortars. Three different admixtures were added to the mixes at the level of 1.3% by binder mass. In particular, sulphonated polymer-based, polycarboxylates-based and lignosulfonates-based high-range water reducers were used. In addition, a hardening accelerator was added to the mixes up to 1.0% respect to binder mass. Ground granulated blast furnace slag (according to EN 15167-1) as precursor and sodium metasilicate pentahydrate: potassium hydroxide : sodium carbonate = 7:3:1 in powder form as activator were used to produce different mortars with the dosage of activator between 2% and 16 % vs binder mass. The water was adjusted in order to attain the same workability at the end of the mixing procedure, equal to 160 mm ± 10 mm by means of a flow table. The specimens were cured in climatic chamber at 20°C and R.H. 60%. The effectiveness of the admixtures has been investigated in terms of percentage of water reduction, workability loss over time and compressive strength. The experimental data show that all superplasticizers provides a reduction in mixing water. The admixtures are influenced by the presence of the activator. In fact, the water reduction, at the same initial workability, is maximum in mortars manufactured without activators. However, the ability of water reducers is not influenced by the activator/precursor. Moreover, results indicated that as consequence of superplasticizer addition, the pot-life of reference mortars manufactured without superplasticizer (60 minutes) is extended up to 160 minutes. The addition of high-range water reducers does not delay the development of 1-day compressive strength. On the other hand, it causes a little reduction of mechanical properties at 7 and 28 days respect to the reference mortars, regardless of superplasticizers employed. Finally, the use of hardening accelerator admixture does not determine a reduction in workability loss over time while no improving was detected on the mechanical strength at early and long ages

    Plain and Ultrafine Fly Ashes Mortars for Environmentally Friendly Construction Materials

    No full text
    This paper is aimed to study the rheological and physical performance of mortars manufactured replacing Portland-based cements with low calcium siliceous fly ash (FA) or ultrafine fly ash (UFFA). Five different types of cement (CEM I, CEM II/A-LL, CEM III/A, CEM III/B, and CEM IV according to EN 197-1) were used. Mortars were manufactured with FA or UFFA replacing 5%, 15%, 25%, 35%, and 50% of cement mass. Results indicate that compressive strength of mortars with UFFA is considerably higher than that of mixtures containing traditional FA, both at early and long ages. Moreover, experimental data reveal that replacement of cement with up to 25% of UFFA determines higher compressive strength at 7, 28, and 84 days than plain mortars (containing cement only), regardless of the type of cement used. Mortars manufactured with 35% or 50% of UFFA show slightly lower or similar compressive strength compared to the reference mortar (containing cement only). In addition, the results show values of the strength activity index of mortars made with FA 25%, 23%, and 20% lower than the reference corresponding mortars (cement only) at 7, 28, and 84 days, respectively. The grinding of FA, despite resulting in an increase in production energy and CO2 emissions compared to unmilled FA, allows a wide use of these SCM (Supplementary Cementitious Materials) in place of cement, reducing the environmental impact of mortars up to 40% at the 28-day strength class. The use of UFFA ensures better resistance in CaCl2-rich environments

    Alternative binders as milestone of 3R strategy for sustainable construction materials

    No full text
    The main challenge for concrete industry - and in general for construction materials - is to serve the two major needs of human society, the protection of the environment, on one hand, and the requirements of buildings and infrastructures by the world’s growing population, on the other. In the past concrete industry has satisfied these needs well. However, for a variety of reasons, the situation has changed dramatically in the last years. First of all, the concrete industry is the largest consumer of natural resources. Secondly, Portland cement, the binder of modern concrete mixtures, is not as environmentally friendly. The world's cement production, in fact, contributes to the earth's atmosphere about 7% of the total CO2 emissions, CO2 being one of the primary greenhouse gas (GHG) responsible for global warming and climate change. As a consequence, concrete industry in the future has to face two antithetically needs. In other words, how the concrete industry can feed the growing population needs being - at the same time - sustainable? The answer to this question is represented by the “3R-Green Strategy” widely discussed in the first chapter of this PhD thesis: Reduction in consumption of gross energy for construction materials production, Reduction in polluting emissions and Reduction in consuming not renewable natural resources. In particular, this thesis is focused on the alternative binders to Portland cement such as alkali-activated slag cements and calcium sulphoaluminate cement-based binders in order to manufacture sustainable mixtures for special applications such as repair mortars, lightweight reinforced plasters and concretes for slabs on ground. The experimental results show the feasibility of manufacturing both EN 1504-3 R3 class mortars and Portland-free concretes for jointless slabs on ground with calcium sulphoaluminate cement, supplementary cementitious materials (fly ash, ground granulated blast furnace slag) and hydrated lime instead of Portland cement. Moreover, alkali-activated mortars and concretes seem to be a reasonable alternative to natural hydraulic lime-based and/or traditional Portland cement-based mixtures for rehabilitation or restoration of ancient masonry buildings and existing concretes structures. Finally, a new sustainability index was developed taking into account the environmental impact, the performances and the durability of mixtures. In particular, in the environmental impact section, the natural raw materials consumption, the greenhouse gas emissions and the energy consumption have been considered. Furthermore, depending on the applications and the environments, design parameters and properties related to durability have been assigned to each mixture

    Fiber reinforced mortars based on free Portland-CSA binders under high stress rate

    No full text
    In this paper, dynamic behaviour of fiber reinforced mortars manufactured with innovative binders based on calcium sulphoaluminate cement (CSA), supplementary cementitious materials (SCMs), gypsum (G) and hydrated lime (CH) was investigated. Fly ash (FA) and ground granulated blast furnace slag (GGBFS) were used to develop sustainable Portland-free cementitious materials. Polypropylene structural fibers (1% by mortar volume) were used to reinforce the cementitious matrix. Fresh properties of mortars were evaluated in terms of workability and specific mass. In addition, elastic modulus, compressive and flexural strength were determined up 28 days from casting. The dynamic behaviour was studied by means of Split Hopkinson Tensile bar having 60 mm in diameter. Preliminary dynamic results reported in terms of stress versus crack opening displacement were evaluated and discussed

    Chloride Diffusion in Concrete Protected with a Silane-Based Corrosion Inhibitor

    No full text
    One of the most important parameters concerning durability is undoubtedly represented by cement matrix resistance to chloride diffusion in environments where reinforced concrete structures are exposed to the corrosion risk induced by marine environment or de-icing salts. This paper deals with protection from chloride ingress by a silane-based surface-applied corrosion inhibitor. Results indicated that the corrosion inhibitor (CI) allows to reduce the penetration of chloride significantly compared to untreated specimens, independently of w/c, cement type, and dosage. Reduction of chloride diffusion coefficient (Dnssn) measured by an accelerated test in treated concrete was in the range 30–60%. Natural chloride diffusion test values indicate a sharp decrease in apparent diffusion coefficient (Dapp) equal to about 75% when concrete is protected by CI. Mechanism of action of CI in slowing down the chloride penetration inside the cement matrix is basically due to the water repellent effect as confirmed by data of concrete bulk electrical resistivity

    Fiber reinforced mortars based on free Portland-CSA binders under high stress rate

    No full text
    In this paper, dynamic behaviour of fiber reinforced mortars manufactured with innovative binders based on calcium sulphoaluminate cement (CSA), supplementary cementitious materials (SCMs), gypsum (G) and hydrated lime (CH) was investigated. Fly ash (FA) and ground granulated blast furnace slag (GGBFS) were used to develop sustainable Portland-free cementitious materials. Polypropylene structural fibers (1% by mortar volume) were used to reinforce the cementitious matrix. Fresh properties of mortars were evaluated in terms of workability and specific mass. In addition, elastic modulus, compressive and flexural strength were determined up 28 days from casting. The dynamic behaviour was studied by means of Split Hopkinson Tensile bar having 60 mm in diameter. Preliminary dynamic results reported in terms of stress versus crack opening displacement were evaluated and discussed

    CSA-based mortars manufactured with tartaric acid-based retarder

    No full text
    The article deals with the evaluation of the effect of a tartaric acid-based set retarding admixture on the properties of environmentally friendly mortars manufactured with CSA, anhydrite, hydrated lime and supplementary cementitious materials (fly ash, metakaolin and slag cement). Results indicated that the tartaric acid, acts as superplasticizer and it is effective to extend the pot-life of mortars up to about 2 hours. On the other hand, the set-retarding admixture determines a strong retardation of binder hydration and, consequently, a reduction of compressive strength at early ages. Mortars without tartaric acid showed an initial expansion during the first 5-7 days as a consequence of ettringite formation than mixtures shrink. When set-retarding admixture is used, the initial free-expansion totally disappears and shrinkage begins immediately after final set has occurred. However, after 270 days shrinkage is substantially the same for mortars with and without tartaric acid

    Influence of Lithium Carbonate and Sodium Carbonate on Physical and Elastic Properties and on Carbonation Resistance of Calcium Sulphoaluminate-Based Mortars

    No full text
    In this study, three different hardening accelerating admixtures (sodium carbonate, lithium carbonate and a blend of sodium and lithium carbonates) were employed to prepare calcium sulphoaluminate cement-based mortars. The workability, setting times, entrapped air, elasto-mechanical properties such as compressive strength and dynamic modulus of elasticity, free shrinkage, water absorption and carbonation rate were measured and mercury intrusion porosimetry were also performed. Experimental results show that a mixture of lithium carbonate and sodium carbonate acts as a hardening accelerating admixture, improving the early-age strength and promoting a remarkable pore structure refinement. Finally, sodium carbonate also reduces the water absorption, the carbonation rate and the shrinkage of mortars without affecting the setting times and the workability
    corecore