41 research outputs found

    Large nonzero-moment magnetic strings in antiferromagnetic crystals of the manganite type

    Full text link
    The magnetic strings in antiferromagnetic crystals with the spin S=1/2S = 1 /2 differ from the magnetic polarons (ferrons) by the absence of the additional magnetic moment. We show that in the S>1/2S > 1 /2 double exchange crystals with the antiferromagnetic sds-d exchange, a new type of magnetic strings appears, which possesses a magnetic moment. It is concentrated at the center of the string, and the magnetized string is, in its essence, the state intermediate between the string and the ferron. In antiferromagnetic manganites, this moment is by an order of magnitude larger than that of a magnetic atom. Unlike the conventional ferrons, the magnetization of the strings exists at any parameters of the crystals under consideration. We argue that this new type of magnetic state can be relevant to some doped antiferromagnets including manganites.Comment: 7 pages, 1 eps figure, RevTeX, submitted to Phys. Rev.

    Magnetic Phases of Electron-Doped Manganites

    Full text link
    We study the anisotropic magnetic structures exhibited by electron-doped manganites using a model which incorporates the double-exchange between orbital ly degenerate ege_{g} electrons and the super-exchange between t2gt_{2g} electrons with realistic values of the Hund's coupling(JHJ_H), the super-exchange coupling(JAFJ_{AF}), and the bandwidth(WW). We look at the relative stabilities of the G, C and A type antiferromagnetic ph ases. In particular we find that the G-phase is stable for low electron doping as seen in experiments. We find good agreement with the experimentally observed magnetic phase diagrams of electron-doped manganites (x>0.5x > 0.5) such as Nd1x_{1-x}Srx_{x}MnO3_{3}, Pr1x_{1-x}Srx_{x}MnO3_{3}, and Sm1x_{1-x}Cax_{x}MnO3_{3}. We can also explain the experimentally observed orbital structures of the C a nd A phases. We also extend our calculation for electron-doped bilayer manganites of the form R22x_{2-2x}A1+2x_{1+2x}Mn2_2O7_7 and predict that the C-phase will be absent in t hese systems due to their reduced dimensionality.Comment: 7 .ps files included. To appear in Phys. Rev. B (Feb 2001

    Stability and dynamics of free magnetic polarons

    Full text link
    The stability and dynamics of a free magnetic polaron are studied by Monte Carlo simulation of a classical two-dimensional Heisenberg model coupled to a single electron. We compare our results to the earlier mean-field analysis of the stability of the polaron, finding qualitative similarity but quantitative differences. The dynamical simulations give estimates of the temperature dependence of the polaron diffusion, as well as a crossover to a tunnelling regime.Comment: 4 pages including 4 .eps figure

    Variational Mean Field approach to the Double Exchange Model

    Get PDF
    It has been recently shown that the double exchange Hamiltonian, with weak antiferromagnetic interactions, has a richer variety of first and second order transitions than previously anticipated, and that such transitions are consistent with the magnetic properties of manganites. Here we present a thorough discussion of the variational Mean Field approach that leads to the these results. We also show that the effect of the Berry phase turns out to be crucial to produce first order Paramagnetic-Ferromagnetic transitions near half filling with transition temperatures compatible with the experimental situation. The computation relies on two crucial facts: the use of a Mean Field ansatz that retains the complexity of a system of electrons with off-diagonal disorder, not fully taken into account by the Mean Field techniques, and the small but significant antiferromagnetic superexchange interaction between the localized spins.Comment: 13 pages, 11 postscript figures, revte

    A Self Assembled Nanoelectronic Quantum Computer Based on the Rashba Effect in Quantum Dots

    Full text link
    Quantum computers promise vastly enhanced computational power and an uncanny ability to solve classically intractable problems. However, few proposals exist for robust, solid state implementation of such computers where the quantum gates are sufficiently miniaturized to have nanometer-scale dimensions. Here I present a new approach whereby a complete computer with nanoscale gates might be self-assembled using chemical synthesis. Specifically, I demonstrate how to self-assemble the fundamental unit of this quantum computer - a 2-qubit universal quantum controlled-NOT gate - based on two exchange coupled multilayered quantum dots. Then I show how these gates can be wired using thiolated conjugated molecules as electrical connectors. A qubit is encoded in the ground state of a quantum dot spin-split by the Rashba interaction. Arbitrary qubit rotations are effected by bringing the spin splitting energy in a target quantum dot in resonance with a global ac magnetic field by applying a potential pulse of appropriate amplitude and duration to the dot. The controlled dynamics of the 2-qubit controlled-NOT operation (XOR) can be realized by exploiting the exchange coupling with the nearest neighboring dot. A complete prescription for initialization of the computer and data input/output operations is presented.Comment: 22 pages, 4 figure

    The effect of oxygen stoichiometry on electrical transport and magnetic properties of La0.9Te0.1MnOy

    Full text link
    The effect of the variation of oxygen content on structural, magnetic and transport properties in the electron-doped manganites La0.9Te0.1MnOy has been investigated. All samples show a rhombohedral structure with the space group . The Curie temperature decreases and the paramagnetic-ferromagnetic (PM-FM) transition becomes broader with the reduction of oxygen content. The resistivity of the annealed samples increases slightly with a small reduction of oxygen content. Further reduction in the oxygen content, the resistivity maximum increases by six orders of magnitude compared with that of the as-prepared sample, and the r(T) curves of samples with y = 2.86 and y = 2.83 display the semiconducting behavior () in both high-temperature PM phase and low-temperature FM phase, which is considered to be related to the appearance of superexchange ferromagnetism (SFM) and the localization of carriers. The results are discussed in terms of the combined effects of the increase in the Mn2+/(Mn2++Mn3+) ratio, the partial destruction of double exchange (DE) interaction, and the localization of carriers due to the introduction of oxygen vacancies in the Mn-O-Mn network.Comment: 20 pages, 8 figure
    corecore