296 research outputs found
Spatially aggregated clusters and scattered smaller loci of elevated malaria vector density and human infection prevalence in urban Dar es Salaam, Tanzania
Background
Malaria transmission, primarily mediated by Anopheles gambiae, persists in Dar es Salaam (DSM) despite high coverage with bed nets, mosquito-proofed housing and larviciding. New or improved vector control strategies are required to eliminate malaria from DSM, but these will only succeed if they are delivered to the minority of locations where residual transmission actually persists. Hotspots of spatially clustered locations with elevated malaria infection prevalence or vector densities were, therefore, mapped across the city in an attempt to provide a basis for targeting supplementary interventions.
Methods
Two phases of a city-wide population-weighted random sample of cross-sectional household surveys of malaria infections were complemented by two matching phases of geographically overlapping, high-resolution, longitudinal vector density surveys; spanning 2010–2013. Spatial autocorrelations were explored using Moran’s I and hotspots were detected using flexible spatial scan statistics.
Results
Seven hotspots of spatially clustered elevated vector density and eight of malaria infection prevalence were detected over both phases. Only a third of vectors were collected in hotspots in phase 1 (30 %) and phase 2 (33 %). Malaria prevalence hotspots accounted for only half of malaria infections detected in phase 1 (55 %) and phase 2 (47 %). Three quarters (76 % in phase 1 and 74 % in phase 2) of survey locations with detectable vector populations were outside of hotspots. Similarly, more than half of locations with higher infection prevalence (>10 %) occurred outside of hotspots (51 % in phase 1 and 54 % in phase 2). Vector proliferation hazard (exposure to An. gambiae) and malaria infection risk were only very loosely associated with each other (Odds ratio (OR) [95 % Confidence Interval (CI)] = 1.56 [0.89, 1.78], P = 0.52)).
Conclusion
Many small, scattered loci of local malaria transmission were haphazardly scattered across the city, so interventions targeting only currently identifiable spatially aggregated hotspots will have limited impact. Routine, spatially comprehensive, longitudinal entomological and parasitological surveillance systems, with sufficient sensitivity and spatial resolution to detect these scattered loci, are required to eliminate transmission from this typical African city. Intervention packages targeted to both loci and hotspots of transmission will need to suppress local vector proliferation, treat infected residents and provide vulnerable residents with supplementary protective measures against exposure
Predicting the Impact of Climate Change on Threatened Species in UK Waters
Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)
Nurse led, primary care based antiretroviral treatment versus hospital care: a controlled prospective study in Swaziland
<p>Abstract</p> <p>Background</p> <p>Antiretroviral treatment services delivered in hospital settings in Africa increasingly lack capacity to meet demand and are difficult to access by patients. We evaluate the effectiveness of nurse led primary care based antiretroviral treatment by comparison with usual hospital care in a typical rural sub Saharan African setting.</p> <p>Methods</p> <p>We undertook a prospective, controlled evaluation of planned service change in Lubombo, Swaziland. Clinically stable adults with a CD4 count > 100 and on antiretroviral treatment for at least four weeks at the district hospital were assigned to either nurse led primary care based antiretroviral treatment care or usual hospital care. Assignment depended on the location of the nearest primary care clinic. The main outcome measures were clinic attendance and patient experience.</p> <p>Results</p> <p>Those receiving primary care based treatment were less likely to miss an appointment compared with those continuing to receive hospital care (RR 0·37, <it>p </it>< 0·0001). Average travel cost was half that of those receiving hospital care (<it>p </it>= 0·001). Those receiving primary care based, nurse led care were more likely to be satisfied in the ability of staff to manage their condition (RR 1·23, <it>p </it>= 0·003). There was no significant difference in loss to follow-up or other health related outcomes in modified intention to treat analysis. Multilevel, multivariable regression identified little inter-cluster variation.</p> <p>Conclusions</p> <p>Clinic attendance and patient experience are better with nurse led primary care based antiretroviral treatment care than with hospital care; health related outcomes appear equally good. This evidence supports efforts of the WHO to scale-up universal access to antiretroviral treatment in sub Saharan Africa.</p
Identification of field caught Anopheles gambiae s.s. and Anopheles arabiensis by TaqMan single nucleotide polymorphism genotyping
BACKGROUND: Identification of Anopheles gambiae s.s. and Anopheles arabiensis from field-collected Anopheles gambiae s.l. is often necessary in basic and applied research, and in operational control programmes. The currently accepted method involves use of standard polymerase chain reaction amplification of ribosomal DNA (rDNA) from the 3' 28S to 5' intergenic spacer region of the genome, and visual confirmation of amplicons of predicted size on agarose gels, after electrophoresis. This report describes development and evaluation of an automated, quantitative PCR method based upon TaqManâ„¢ single nucleotide polymorphism (SNP) genotyping. METHODS: Standard PCR, and TaqMan SNP genotyping with newly designed primers and fluorophore-labeled probes hybridizing to sequences of complementary rDNA specific for either An. gambiae s.s. or An. arabiensis, were conducted in three experiments involving field-collected An. gambiae s.l. from western Kenya, and defined laboratory strains. DNA extraction was from a single leg, sonicated for five minutes in buffer in wells of 96-well PCR plates. RESULTS: TaqMan SNP genotyping showed a reaction success rate, sensitivity, and species specificity comparable to that of standard PCR. In an extensive field study, only 29 of 3,041 (0.95%) were determined to be hybrids by TaqMan (i.e., having rDNA sequences from both species), however, all but one were An. arabiensis by standard PCR, suggesting an acceptably low (ca. 1%) error rate for TaqMan genotyping in mistakenly identifying species hybrids. CONCLUSION: TaqMan SNP genotyping proved to be a sensitive and rapid method for identification of An. gambiae s.l. and An. arabiensis, with a high success rate, specific results, and congruence with the standard PCR method
Pyrethroid Resistance in an Anopheles funestus Population from Uganda
Background: The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary haracterisation of the putative resistance mechanisms involved.
Methodology/Principal Findings: A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin). Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate), malathion (organophosphate) and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring
pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and
resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance
in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with
elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG.
Conclusion: This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken into account for the implementation and
management of vector control programs in Africa
On the move: New insights on the ecology and management of native and alien macrophytes
Globally, freshwater ecosystems are under threat. The main threats come from catchment land-use changes, altered water regimes, eutrophication, invasive species, climate change and combinations of these factors. We need scientific research to respond to these challenges by providing solutions to halt the deterioration and improve the condition of our valuable freshwaters. This requires a good understanding of aquatic ecosystems, and the nature and scale of changes occurring. Macrophytes play a fundamental role in aquatic systems. They are sensitive indicators of ecosystem health, as they are affected by run-off from agricultural, industrial or urban areas. On the other hand, alien macrophytes are increasingly invading aquatic systems all over the world. Improving our knowledge on the ecology and management of both native and alien plants is indispensable to address threats to freshwaters in order to protect and restore aquatic habitats. The International Aquatic Plants Group (IAPG) brings together scientists and practitioners based at universities, research and environmental organisations around the world. The main themes of the 15th symposium 2018 in New Zealand were biodiversity and conservation, management, invasive species, and ecosystem response and restoration. This Virtual Special Issue provides a comprehensive review from the symposium, addressing the ecology of native macrophytes, including those of conservation concern, and highly invasive alien macrophytes, and the implications of management interventions. In this editorial paper, we highlight insights and paradigms on the ecology and management of native and alien macrophytes gathered during the meeting
Plasma viral loads during early HIV-1 infection are similar in subtype C- and non-subtype C-infected African seroconverters.
Recent data suggest that infection with human immunodeficiency virus type 1 (HIV-1) subtype C results in prolonged high-level viremia (>5 log10 copies/mL) during early infection. We examined the relationship between HIV-1 subtype and plasma viremia among 153 African seroconverters. Mean setpoint viral loads were similar for C and non-C subtypes: 4.36 vs 4.42 log10 copies/mL (P = .61). The proportion of subtype C-infected participants with viral loads >5 log10 copies/mL was not greater than the proportion for those with non-C infection. Our data do not support the hypothesis that higher early viral load accounts for the rapid spread of HIV-1 subtype C in southern Africa
Economic Returns to Investment in AIDS Treatment in Low and Middle Income Countries
Since the early 2000s, aid organizations and developing country governments have invested heavily in AIDS treatment. By 2010, more than five million people began receiving antiretroviral therapy (ART) – yet each year, 2.7 million people are becoming newly infected and another two million are dying without ever having received treatment. As the need for treatment grows without commensurate increase in the amount of available resources, it is critical to assess the health and economic gains being realized from increasingly large investments in ART. This study estimates total program costs and compares them with selected economic benefits of ART, for the current cohort of patients whose treatment is cofinanced by the Global Fund to Fight AIDS, Tuberculosis and Malaria. At end 2011, 3.5 million patients in low and middle income countries will be receiving ART through treatment programs cofinanced by the Global Fund. Using 2009 ART prices and program costs, we estimate that the discounted resource needs required for maintaining this cohort are 12 to $34 billion through increased labor productivity, averted orphan care, and deferred medical treatment for opportunistic infections and end-of-life care. Under alternative assumptions regarding the labor productivity effects of HIV infection, AIDS disease, and ART, the monetary benefits range from 81 percent to 287 percent of program costs over the same period. These results suggest that, in addition to the large health gains generated, the economic benefits of treatment will substantially offset, and likely exceed, program costs within 10 years of investment
- …