41 research outputs found

    Aneurysm treatment within 6 h versus 6-24 h after rupture in patients with subarachnoid hemorrhage

    Full text link
    BACKGROUND The risk of rebleeding after aneurysmal subarachnoid hemorrhage (aSAH) is the highest during the initial hours after rupture. Emergency aneurysm treatment may decrease this risk, but is a logistic challenge and economic burden. We aimed to investigate whether aneurysm treatment <6 h after rupture is associated with a decreased risk of poor functional outcome compared to aneurysm treatment 6-24 h after rupture. METHODS We used data of patients included in the ULTRA trial (NCT02684812). All patients in ULTRA were admitted within 24 h after aneurysm rupture. For the current study, we excluded patients in whom the aneurysm was not treated <24 h after rupture. We calculated crude and adjusted risk ratios (aRR) with 95% confidence intervals using Poisson regression analyses for poor functional outcome (death or dependency, assessed by the modified Rankin Scale) after aneurysm treatment <6 h versus 6-24 h after rupture. Adjustments were made for age, sex, clinical condition on admission (WFNS scale), amount of extravasated blood (Fisher score), aneurysm location, tranexamic acid treatment, and aneurysm treatment modality. RESULTS We included 497 patients. Poor outcome occurred in 63/110 (57%) patients treated within 6 h compared to 145/387 (37%) patients treated 6-24 h after rupture (crude RR: 1.53, 95% CI: 1.24-1.88; adjusted RR: 1.36, 95% CI: 1.11-1.66). CONCLUSION Aneurysm treatment <6 h is not associated with better functional outcome than aneurysm treatment 6-24 h after rupture. Our results do not support a strategy aiming to treat every patient with a ruptured aneurysm <6 h after rupture

    Induced Hypertension in Preventing Cerebral Infarction in Delayed Cerebral Ischemia After Subarachnoid Hemorrhage

    Get PDF
    Background and Purpose- Delayed cerebral ischemia (DCI) is an important cause of poor outcome after aneurysmal subarachnoid hemorrhage. If clinical signs of DCI occur, induced hypertension is a plausible but unproven therapeutic intervention. There is clinical equipoise if the use of hypertension induction is useful or not with the consequence that this strategy is irregularly used. We explored the effect of blood pressure augmentation in preventing cerebral infarction in patients with clinical signs of DCI. Methods- We performed a retrospective observational study, totaling 1647 patients with aneurysmal subarachnoid hemorrhage admitted at 3 academic hospitals in the Netherlands between 2006 and 2015. To study the primary outcome DCI related cerebral infarcts, we only included patients with no cerebral infarct at the time of onset of clinical signs of DCI. Cox regression was used to test the association between induced hypertension after onset of clinical signs of DCI and the occurrence of DCI related cerebral infarcts. Logistic regression was used to relate hypertension induction with poor outcome after 3 months, defined as a modified Rankin score >3. Results were adjusted for treatment center and baseline characteristics. Results- Clinical signs of DCI occurred in 479 (29%) patients of whom 300 without cerebral infarction on computed tomography scan at that time. Of these 300 patients, 201 (67%) were treated with hypertension induction and 99 were not. Of the patients treated with hypertension induction, 41 (20%) developed a DCI related cerebral infarct compared with 33 (33%) with no induced hypertension: adjusted hazard ratio, 0.59; 95% CI, 0.35 to 0.99. Hypertension induction also prevented poor outcome: adjusted odds ratio, 0.27; 95% CI, 0.14 to 0.55. Conclusions- Hypertension induction seems an effective strategy for preventing DCI related cerebral infarcts if not already present at the time of onset of clinical signs of DCI. This may lead to a reduction in poor clinical outcome

    Decompressive hemicraniectomy in severe cerebral venous thrombosis: a prospective case series

    Get PDF
    Small retrospective case series suggest that decompressive hemicraniectomy can be life saving in patients with cerebral venous thrombosis (CVT) and impending brain herniation. Prospective studies of consecutive cases are lacking. Thus, a single centre, prospective study was performed. In 2006 we adapted our protocol for CVT treatment to perform acute decompressive hemicraniectomy in patients with impending herniation, in whom the prognosis with conservative treatment was considered infaust. We included all consecutive patients with CVT between 2006 and 2010 who underwent hemicraniectomy. Outcome was assessed at 12 months with the modified Rankin Scale (mRS). Ten patients (8 women) with a median age of 41 years (range 26–52 years) were included. Before surgery 5 patients had GCS < 9, 9 patients had normal pupils, 1 patient had a unilaterally fixed and dilated pupil. All patients except one had space-occupying intracranial hemorrhagic infarcts. The median preoperative midline shift was 9 mm (range 3–14 mm). Unilateral hemicraniectomy was performed in 9 patients and bilateral hemicraniectomy in one. Two patients died from progressive cerebral edema and expansion of the hemorrhagic infarcts. Five patients recovered without disability at 12 months (mRS 0–1). Two patients had some residual handicap (one minor, mRS 2; one moderate, mRS 3). One patient was severely handicapped (mRS 5). Our prospective data show that decompressive hemicraniectomy in the most severe cases of cerebral venous thrombosis was probably life saving in 8/10 patients, with a good clinical outcome in six. In 2 patients death was caused by enlarging hemorrhagic infarcts

    Implication of long-distance regulation of the HOXA cluster in a patient with postaxial polydactyly

    Get PDF
    Apparently balanced chromosomal inversions may lead to disruption of developmentally important genes at the breakpoints of the inversion, causing congenital malformations. Characterization of such inversions may therefore lead to new insights in human development. Here, we report on a de novo inversion of chromosome 7 (p15.2q36.3) in a patient with postaxial polysyndactyly. The breakpoints do not disrupt likely candidate genes for the limb phenotype observed in the patient. However, on the p-arm the breakpoint separates the HOXA cluster from a gene desert containing several conserved noncoding elements, suggesting that a disruption of a cis-regulatory circuit of the HOXA cluster could be the underlying cause of the phenotype in this patient

    Letter to the Editor: Volume management after subarachnoid hemorrhage

    No full text

    Revascularization of the Posterior Circulation

    No full text
    The primary objective of revascularization procedures in the posterior circulation is the prevention of vertebrobasilar ischemic stroke. Specific anatomical and neurophysiologic characteristics such as posterior communicating artery size affect the susceptibility to ischemia. Current indications for revascularization include symptomatic vertebrobasilar ischemia refractory to medical therapy and ischemia caused by parent vessel occlusion as treatment for complex aneurysms. Treatment options include endovascular angioplasty and stenting, surgical endarterectomy, arterial reimplantation, extracranial-to-intracranial anastomosis, and indirect bypasses. Pretreatment studies including cerebral blood flow measurements with assessment of hemodynamic reserve can affect treatment decisions. Careful blood pressure regulation, neurophysiologic monitoring, and neuroprotective measures such as mild brain hypothermia can help minimize the risks of intervention. Microscope, microinstruments and intraoperative Doppler are routinely used. The superficial temporal artery, occipital artery, and external carotid artery can be used to augment blood flow to the superior cerebellar artery, posterior cerebral artery, posterior inferior cerebellar artery, or anterior inferior cerebellar artery. Interposition venous or arterial grafts can be used to increase length. Several published series report improvement or relief of symptoms in 60 to 100% of patients with a reduction of risk of future stroke and low complication rates

    Decompressive Hemicraniectomy in Cerebral Sinus Thrombosis

    No full text

    Surgical and endovascular management of symptomatic posterior circulation fusiform aneurysms

    No full text
    OBJECT: Patients with fusiform aneurysms can present with subarachnoid hemorrhage (SAH), mass effect, ischemia, or unrelated symptoms. The absence of an aneurysm neck impedes the direct application of a clip and endovascular coil deployment. To evaluate the effects of their treatments, the authors retrospectively analyzed a consecutive series of patients with posterior circulation fusiform aneurysms treated at Stanford University Medical Center between 1991 and 2005. METHODS: Forty-nine patients (mean age 53 years, male/female ratio 1.2:1) treated at the authors' medical center form the basis of the analysis. Twenty-nine patients presented with an SAH. The patients presenting without SAH had cranial nerve dysfunction (five patients), symptoms of mass effect (eight patients), ischemia (six patients), or unrelated symptoms (one patient). The aneurysms were located on the vertebral artery (VA) or posterior inferior cerebellar artery (PICA) (21 patients); vertebrobasilar junction (VBJ) or basilar artery (BA) (18 patients); and posterior cerebral artery (PCA) (10 patients). Pretreatment clinical grades were determined using the Hunt and Hess scale; for patients with unruptured aneurysms (Hunt and Hess Grade 0) functional subgrades were added. Outcome was evaluated using the Glasgow Outcome Scale (GOS) score during a mean follow-up period of 33 months. Overall long-term outcome was good (GOS Score 4 or 5) in 59%, poor (GOS Score 2 or 3) in 16%, and fatal (GOS Score 1) in 24% of the patients. In a univariate analysis, poor outcome was predicted by age greater than 55 years, VBJ location, pretreatment Hunt and Hess grade in patients presenting with SAH, and incomplete aneurysm thrombosis after endovascular treatment. In a multivariate analysis, age greater than 55 years was the confounding factor predicting poor outcome. Stratification by aneurysm location removed the effect of age. Of 13 patients with residual aneurysm after treatment, five (38%) subsequently died of SAH (three patients) or progressive mass effect/brainstem ischemia (two patients). CONCLUSIONS: Certain posterior circulation aneurysm locations (PCA, VA-PICA, and BA-VBJ) represent separate disease entities affecting patients at different ages with distinct patterns of presentation, treatment options, and outcomes. Favorable overall long-term outcome can be achieved in 90% of patients with PCA aneurysms, in 60% of those with VA-PICA aneurysms, and in 39% of those with BA-VBJ aneurysms when using endovascular and surgical techniques. The natural history of the disease was poor in patients with incomplete aneurysm thrombosis after treatmen
    corecore