2,573 research outputs found

    A Variational Monte Carlo Study of the Current Carried by a Quasiparticle

    Full text link
    With the use of Gutzwiller-projected variational states, we study the renormalization of the current carried by the quasiparticles in high-temperature superconductors and of the quasiparticle spectral weight. The renormalization coefficients are computed by the variational Monte Carlo technique, under the assumption that quasiparticle excitations may be described by Gutzwiller-projected BCS quasiparticles. We find that the current renormalization coefficient decreases with decreasing doping and tends to zero at zero doping. The quasiparticle spectral weight Z_+ for adding an electron shows an interesting structure in k space, which corresponds to a depression of the occupation number k just outside the Fermi surface. The perturbative corrections to those quantities in the Hubbard model are also discussed.Comment: 9 pages, 9 figure

    Globular cluster population of the HST frontier fields galaxy J07173724+3744224

    Get PDF
    We present the first measurement of the globular cluster population surrounding the elliptical galaxy J07173724+3744224 (z=0.1546). This galaxy is located in the foreground in the field-of-view of the Hubble Space Telescope (HST) Frontier Fields observations of galaxy cluster MACS J0717.5+3745 (z=0.5458). Based on deep HST ACS F435W, F606W, and F814W images, we find a total globular cluster population of N_tot = 3441 +/- 1416. Applying the appropriate extinction correction and filter transformation from ACS F814W to the Johnson V-band, we determine that the host galaxy has an absolute magnitude of M_V = -22.2. The specific frequency was found to be S_N = 4.5 +/- 1.8. The radial profile of the globular cluster system was best fit using a powerlaw of the form σR0.6\sigma\sim R^{-0.6}, with the globular cluster population found to be more extended than the halo light of the host galaxy (σhaloR1.7\sigma_{halo}\sim R^{-1.7}). The F435W-F814W colour distribution suggests a bimodal population, with red globular clusters 1-3x more abundant than blue clusters. These results are consistent with the host elliptical galaxy J07173724+3744224 having formed its red metal-rich GCs in situ, with the blue metal-poor globular clusters accreted from low-mass galaxies.Comment: 21 pages, 14 figures, 2 tables, revised following peer-review, accepted for publication in MNRA

    Mapping accretion and its variability in the young open cluster NGC 2264: a study based on u-band photometry

    Get PDF
    We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). We performed a deep u,g,r,i mapping and a simultaneous u+r monitoring of the region with CFHT/MegaCam in order to directly probe the accretion process from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range 0.1-2 Mo. About 40% are classical (accreting) T Tauri stars, based on various diagnostics (H_alpha, UV and IR excesses). The remaining non-accreting members define the (photospheric+chromospheric) reference UV emission level over which flux excess is detected and measured. We revise the membership status of cluster members based on UV accretion signatures and report a new population of 50 CTTS candidates. A large range of UV excess is measured for the CTTS population, varying from a few 0.1 to 3 mag. We convert these values to accretion luminosities and obtain mass accretion rates ranging from 1e-10 to 1e-7 Mo/yr. Taking into account a mass-dependent detection threshold for weakly accreting objects, we find a >6sigma correlation between mass accretion rate and stellar mass. A power-law fit, properly accounting for upper limits, yields M_acc \propto M^{1.4+/-0.3}. At any given stellar mass, we find a large spread of accretion rates, extending over about 2 orders of magnitude. The monitoring of the UV excess on a timescale of a couple of weeks indicates that its variability typically amounts to 0.5 dex, much smaller than the observed spread. We suggest that a non-negligible age spread across the cluster may effectively contribute to the observed spread in accretion rates at a given mass. In addition, different accretion mechanisms (like, e.g., short-lived accretion bursts vs. more stable funnel-flow accretion) may be associated to different M_acc regimes.Comment: 24 pages, 21 figures, accepted for publication in Astronomy & Astrophysic

    Imaging Thermal Stratigraphy in Freshwater Lakes Using Georadar

    Get PDF
    Thermal stratification exerts significant control over biogeochemical processing in freshwater lakes. Thus, the temporal and spatial distribution of the thermal structure is an important component in understanding lake ecosystems. We present the first reported observations of lake thermal stratification from surface based georadar measurements acquired over two small freshwater lakes. This method is very useful because it can provide rapid acquisition of 2D or 3D lotic stratification

    Optimal search strategies for hidden targets

    Full text link
    What is the fastest way of finding a randomly hidden target? This question of general relevance is of vital importance for foraging animals. Experimental observations reveal that the search behaviour of foragers is generally intermittent: active search phases randomly alternate with phases of fast ballistic motion. In this letter, we study the efficiency of this type of two states search strategies, by calculating analytically the mean first passage time at the target. We model the perception mecanism involved in the active search phase by a diffusive process. In this framework, we show that the search strategy is optimal when the average duration of "motion phases" varies like the power either 3/5 or 2/3 of the average duration of "search phases", depending on the regime. This scaling accounts for experimental data over a wide range of species, which suggests that the kinetics of search trajectories is a determining factor optimized by foragers and that the perception activity is adequately described by a diffusion process.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let
    corecore