138 research outputs found
Inferring Termination Conditions for Logic Programs using Backwards Analysis
This paper focuses on the inference of modes for which a logic program is
guaranteed to terminate. This generalises traditional termination analysis
where an analyser tries to verify termination for a specified mode. Our
contribution is a methodology in which components of traditional termination
analysis are combined with backwards analysis to obtain an analyser for
termination inference. We identify a condition on the components of the
analyser which guarantees that termination inference will infer all modes which
can be checked to terminate. The application of this methodology to enhance a
traditional termination analyser to perform also termination inference is
demonstrated
Solving Graph Coloring Problems with Abstraction and Symmetry
This paper introduces a general methodology, based on abstraction and
symmetry, that applies to solve hard graph edge-coloring problems and
demonstrates its use to provide further evidence that the Ramsey number
. The number is often presented as the unknown Ramsey
number with the best chances of being found "soon". Yet, its precise value has
remained unknown for more than 50 years. We illustrate our approach by showing
that: (1) there are precisely 78{,}892 Ramsey colorings; and (2)
if there exists a Ramsey coloring then it is (13,8,8) regular.
Specifically each node has 13 edges in the first color, 8 in the second, and 8
in the third. We conjecture that these two results will help provide a proof
that no Ramsey coloring exists implying that
- …