262 research outputs found

    The ABC Effect in Double-Pionic Nuclear Fusion and a pn Resonance as its Possible Origin

    Full text link
    The ABC effect -- a long-standing puzzle in double-pionic fusion -- has been reexamined by the first exclusive and kinematically complete measurements of solid statistics for the fusion reactions pndπ0π0pn \to d\pi^0\pi^0, pd3pd \to ^3Heππ\pi\pi and dd4dd \to ^4Heππ\pi\pi using the WASA detector, first at CELSIUS and recently at COSY -- the latter with a statistics increased by another two orders of magnitude. In all cases we observe a huge low-mass enhancement in the ππ\pi\pi-invariant mass accompanied by a pronounced ΔΔ\Delta\Delta excitation. For the most basic fusion reaction, the pndπ0π0pn \to d\pi^0\pi^0 reaction, we observe in addition a very pronounced resonance-like energy dependence in the total cross section with a maximum 90 MeV below the ΔΔ\Delta\Delta mass and a width of only 50 MeV, which is five times smaller than expected from a conventional tt-channel ΔΔ\Delta\Delta excitation. This reveals the ABC effect to be the consequence of a s-channel resonance with the formfactor of this dibaryonic state being reflected in the low-mass enhancement of the ππ\pi\pi-invariant mass. From the fusion reactions to 3^3He and 4^4He we learn that this resonance is robust enough to survive even in nuclei.Comment: conference proceedings PANIC 0
    corecore