34 research outputs found
A new methodology for thermostructural topology optimization: Analytical definition and validation
In the last few years, the rapid diffusion of components produced through additive manufacturing processes has boosted the research on design methodologies based on topology optimization algorithms. Structural topology optimization is largely employed since it permits to minimize the component weight and maximize its stiffness and, accordingly, optimize its resistance under structural loads. On the other hand, thermal topology optimization has been less investigated, even if in many applications, such as turbine blades, engines, heat exchangers, thermal loads have a crucial impact. Currently, structural and thermal optimizations are mainly considered separately, despite the fact that they are both present and coupled in components in service condition. In the present paper, a novel methodology capable of defining the optimized structure under simultaneous thermomechanical constraints is proposed. The mathematical formulation behind the optimization algorithm is reported. The proposed methodology is finally validated on literature benchmarks and on a real component, confirming that it permits to define the topology, which presents the maximized thermal and mechanical performance
Comparison of multi-objective optimization methodologies for engineering applications
Computational models describing the behavior of complex physical systems are often used in the engineering design field to identify better or optimal solutions with respect to previously defined performance criteria. Multi-objective optimization problems arise and the set of optimal compromise solutions (Pareto front) has to be identified by an effective and complete search procedure in order to let the decision maker, the designer, to carry out the best choice. Four multi-objective optimization techniques are analyzed by describing their formulation, advantages and disadvantages. The effectiveness of the selected techniques for engineering design purposes is verified by comparing the results obtained by solving a few benchmarks and a real structural engineering problem concerning an engine bracket of a ca
A cosa serve la Matematica a un Esperto della Produzione Industriale
Periodico di notizie e programmi della Scuola della Produzione Industrial