53 research outputs found
A complementary view on the growth of directory trees
Trees are a special sub-class of networks with unique properties, such as the
level distribution which has often been overlooked. We analyse a general tree
growth model proposed by Klemm {\em et. al.} (2005) to explain the growth of
user-generated directory structures in computers. The model has a single
parameter which interpolates between preferential attachment and random
growth. Our analysis results in three contributions: First, we propose a more
efficient estimation method for based on the degree distribution, which is
one specific representation of the model. Next, we introduce the concept of a
level distribution and analytically solve the model for this representation.
This allows for an alternative and independent measure of . We argue that,
to capture real growth processes, the estimations from the degree and the
level distributions should coincide. Thus, we finally apply both
representations to validate the model with synthetically generated tree
structures, as well as with collected data of user directories. In the case of
real directory structures, we show that measured from the level
distribution are incompatible with measured from the degree distribution.
In contrast to this, we find perfect agreement in the case of simulated data.
Thus, we conclude that the model is an incomplete description of the growth of
real directory structures as it fails to reproduce the level distribution. This
insight can be generalised to point out the importance of the level
distribution for modeling tree growth.Comment: 16 pages, 7 figure
Genetic architecture of ambulatory blood pressure in the general population: insights from cardiovascular gene-centric array.
Genetic determinants of blood pressure are poorly defined. We undertook a large-scale, gene-centric analysis to identify loci and pathways associated with ambulatory systolic and diastolic blood pressure. We measured 24-hour ambulatory blood pressure in 2020 individuals from 520 white European nuclear families (the Genetic Regulation of Arterial Pressure of Humans in the Community Study) and genotyped their DNA using the Illumina HumanCVD BeadChip array, which contains ≈50 000 single nucleotide polymorphisms in >2000 cardiovascular candidate loci. We found a strong association between rs13306560 polymorphism in the promoter region of MTHFR and CLCN6 and mean 24-hour diastolic blood pressure; each minor allele copy of rs13306560 was associated with 2.6 mm Hg lower mean 24-hour diastolic blood pressure (P=1.2×10(-8)). rs13306560 was also associated with clinic diastolic blood pressure in a combined analysis of 8129 subjects from the Genetic Regulation of Arterial Pressure of Humans in the Community Study, the CoLaus Study, and the Silesian Cardiovascular Study (P=5.4×10(-6)). Additional analysis of associations between variants in gene ontology-defined pathways and mean 24-hour blood pressure in the Genetic Regulation of Arterial Pressure of Humans in the Community Study showed that cell survival control signaling cascades could play a role in blood pressure regulation. There was also a significant overrepresentation of rare variants (minor allele frequency: <0.05) among polymorphisms showing at least nominal association with mean 24-hour blood pressure indicating that a considerable proportion of its heritability may be explained by uncommon alleles. Through a large-scale gene-centric analysis of ambulatory blood pressure, we identified an association of a novel variant at the MTHFR/CLNC6 locus with diastolic blood pressure and provided new insights into the genetic architecture of blood pressure
Common genetic variations in telomere length genes and lung cancer: a Mendelian randomisation study and its novel application in lung tumour transcriptome.
Genome-wide association studies (GWASs) have identified genetic susceptibility variants for both leukocyte telomere length (LTL) and lung cancer susceptibility. Our study aims to explore the shared genetic basis between these traits and investigate their impact on somatic environment of lung tumours.
We performed genetic correlation, Mendelian randomisation (MR), and colocalisation analyses using the largest available GWASs summary statistics of LTL (N=464,716) and lung cancer (N=29,239 cases and 56,450 controls). Principal components analysis based on RNA-sequencing data was used to summarise gene expression profile in lung adenocarcinoma cases from TCGA (N=343).
Although there was no genome-wide genetic correlation between LTL and lung cancer risk, longer LTL conferred an increased risk of lung cancer regardless of smoking status in the MR analyses, particularly for lung adenocarcinoma. Of the 144 LTL genetic instruments, 12 colocalised with lung adenocarcinoma risk and revealed novel susceptibility loci, including MPHOSPH6, PRPF6, and POLI. The polygenic risk score for LTL was associated with a specific gene expression profile (PC2) in lung adenocarcinoma tumours. The aspect of PC2 associated with longer LTL was also associated with being female, never smokers, and earlier tumour stages. PC2 was strongly associated with cell proliferation score and genomic features related to genome stability, including copy number changes and telomerase activity.
This study identified an association between longer genetically predicted LTL and lung cancer and sheds light on the potential molecular mechanisms related to LTL in lung adenocarcinomas.
Institut National du Cancer (GeniLuc2017-1-TABAC-03-CIRC-1-TABAC17-022), INTEGRAL/NIH (5U19CA203654-03), CRUK (C18281/A29019), and Agence Nationale pour la Recherche (ANR-10-INBS-09)
Drinking behaviour of the common bent wing bat, Miniopterus schreibersii, in Bat Cave Naracoorte
- …
