708 research outputs found
Ultracold homonuclear and heteronuclear collisions in metastable helium
Scattering and ionizing cross sections and rates are calculated for ultracold
collisions between metastable helium atoms using a fully quantum-mechanical
close-coupled formalism. Homonuclear collisions of the bosonic HeHe and fermionic HeHe systems, and
heteronuclear collisions of the mixed HeHe system,
are investigated over a temperature range 1 K to 1 K. Carefully
constructed Born-Oppenheimer molecular potentials are used to describe the
electrostatic interaction between the colliding atoms, and complex optical
potentials used to represent loss through ionization from the
states. Magnetic spin-dipole mediated transitions from the
state are included and results reported for spin-polarized and unpolarized
systems. Comparisons are made with experimental results, previous
semi-classical models, and a perturbed single channel model.Comment: 14 pages, 9 figure
Photoassociation spectra and the validity of the dipole approximation for weakly bound dimers
Photoassociation (PA) of ultracold metastable helium to the 2s2p manifold is
theoretically investigated using a non-perturbative close-coupled treatment in
which the laser coupling is evaluated without assuming the dipole
approximation. The results are compared with our previous study [Cocks and
Whittingham, Phys. Rev. A 80, 023417 (2009)] that makes use of the dipole
approximation. The approximation is found to strongly affect the PA spectra
because the photoassociated levels are weakly bound, and a similar impact is
predicted to occur in other systems of a weakly bound nature. The inclusion or
not of the approximation does not affect the resonance positions or widths,
however significant differences are observed in the background of the spectra
and the maximum laser intensity at which resonances are discernable. Couplings
not satisfying the dipole selection rule |J-1| <= J' <= |J+1| do not lead to
observable resonances.Comment: 5 pages, 2 figures; Minor textual revision
"Beat" patterns for the odd-even staggering in octupole bands from a quadrupole-octupole Hamiltonian
We propose a collective Hamiltonian which incorporates the standard
quadrupole terms, octupole terms classified according to the irreducible
representations of the octahedron group, a quadrupole-octupole interaction, as
well as a term for the bandhead energy linear in K (the projection of angular
momentum on the body-fixed z-axis). The energy is subsequently minimized with
respect to K for each given value of the angular momentum I, resulting in K
values increasing with I within each band, even in the case in which K is
restricted to a set of microscopically plausible values. We demonstrate that
this Hamiltonian is able to reproduce a variety of ``beat'' patterns observed
recently for the odd-even staggering in octupole bands of light actinides.Comment: LaTeX, 20 pages plus 12 figures given in separate .ps file
Ice-lens formation and geometrical supercooling in soils and other colloidal materials
We present a new, physically-intuitive model of ice-lens formation and growth
during the freezing of soils and other dense, particulate suspensions.
Motivated by experimental evidence, we consider the growth of an ice-filled
crack in a freezing soil. At low temperatures, ice in the crack exerts large
pressures on the crack walls that will eventually cause the crack to split
open. We show that the crack will then propagate across the soil to form a new
lens. The process is controlled by two factors: the cohesion of the soil, and
the geometrical supercooling of the water in the soil; a new concept introduced
to measure the energy available to form a new ice lens. When the supercooling
exceeds a critical amount (proportional to the cohesive strength of the soil) a
new ice lens forms. This condition for ice-lens formation and growth does not
appeal to any ad hoc, empirical assumptions, and explains how periodic ice
lenses can form with or without the presence of a frozen fringe. The proposed
mechanism is in good agreement with experiments, in particular explaining
ice-lens pattern formation, and surges in heave rate associated with the growth
of new lenses. Importantly for systems with no frozen fringe, ice-lens
formation and frost heave can be predicted given only the unfrozen properties
of the soil. We use our theory to estimate ice-lens growth temperatures
obtaining quantitative agreement with the limited experimental data that is
currently available. Finally we suggest experiments that might be performed in
order to verify this theory in more detail. The theory is generalizable to
complex natural-soil scenarios, and should therefore be useful in the
prediction of macroscopic frost heave rates.Comment: Submitted to PR
Laser Intensity Dependence of Photoassociation in Ultracold Metastable Helium
Photoassociation of spin-polarized metastable helium to the three lowest
rovibrational levels of the J=1, state asymptoting to 2SP is studied using a second-order perturbative
treatment of the line shifts valid for low laser intensities, and two variants
of a non-perturbative close-coupled treatment, one based upon dressed states of
the matter plus laser system, and the other on a modified radiative coupling
which vanishes asymptotically, thus simulating experimental conditions. These
non-perturbative treatments are valid for arbitrary laser intensities and yield
the complete photoassociation resonance profile. Both variants give nearly
identical results for the line shifts and widths of the resonances and show
that their dependence upon laser intensity is very close to linear and
quadratic respectively for the two lowest levels. The resonance profiles are
superimposed upon a significant background loss, a feature for this metastable
helium system not present in studies of photoassociation in other systems,
which is due to the very shallow nature of the excited state potential.
The results for the line shifts from the close-coupled and perturbative
calculations agree very closely at low laser intensities.Comment: 14 pages, 7 figures, title altered, text reduce
Simulating the Feasibility of Using Liquid Micro-Jets for Determining Electron–Liquid Scattering Cross-Sections
The extraction of electron–liquid phase cross-sections (surface and bulk) is proposed through the measurement of (differential) energy loss spectra for electrons scattered from a liquid micro-jet. The signature physical elements of the scattering processes on the energy loss spectra are highlighted using a Monte Carlo simulation technique, originally developed for simulating electron transport in liquids. Machine learning techniques are applied to the simulated electron energy loss spectra, to invert the data and extract the cross-sections. The extraction of the elastic cross-section for neon was determined within 9% accuracy over the energy range 1–100 eV. The extension toward the simultaneous determination of elastic and ionisation cross-sections resulted in a decrease in accuracy, now to within 18% accuracy for elastic scattering and 1% for ionisation. Additional methods are explored to enhance the accuracy of the simultaneous extraction of liquid phase cross-sections
Cluster Interpretation of Properties of Alternating Parity Bands in Heavy Nuclei
The properties of the states of the alternating parity bands in actinides,
Ba, Ce and Nd isotopes are analyzed within a cluster model. The model is based
on the assumption that cluster type shapes are produced by the collective
motion of the nuclear system in the mass asymmetry coordinate. The calculated
spin dependences of the parity splitting and of the electric multipole
transition moments are in agreement with the experimental data.Comment: 29 pages, 10 figure
Expression of mitochondrial protein genes encoded by nuclear and mitochondrial genomes correlate with energy metabolism in dairy cattle
Background
Mutations in the mitochondrial genome have been implicated in mitochondrial disease, often characterized by impaired cellular energy metabolism. Cellular energy metabolism in mitochondria involves mitochondrial proteins (MP) from both the nuclear (NuMP) and mitochondrial (MtMP) genomes. The expression of MP genes in tissues may be tissue specific to meet varying specific energy demands across the tissues. Currently, the characteristics of MP gene expression in tissues of dairy cattle are not well understood. In this study, we profile the expression of MP genes in 29 adult and six foetal tissues in dairy cattle using RNA sequencing and gene expression analyses: particularly differential gene expression and co-expression network analyses.
Results
MP genes were differentially expressed (DE; over-expressed or under-expressed) across tissues in cattle. All 29 tissues showed DE NuMP genes in varying proportions of over-expression and under-expression. On the other hand, DE of MtMP genes was observed in < 50% of tissues and notably MtMP genes within a tissue was either all over-expressed or all under-expressed. A high proportion of NuMP (up to 60%) and MtMP (up to 100%) genes were over-expressed in tissues with expected high metabolic demand; heart, skeletal muscles and tongue, and under-expressed (up to 45% of NuMP, 77% of MtMP genes) in tissues with expected low metabolic rates; leukocytes, thymus, and lymph nodes. These tissues also invariably had the expression of all MtMP genes in the direction of dominant NuMP genes expression. The NuMP and MtMP genes were highly co-expressed across tissues and co-expression of genes in a cluster were non-random and functionally enriched for energy generation pathway. The differential gene expression and co-expression patterns were validated in independent cow and sheep datasets.
Conclusions
The results of this study support the concept that there are biological interaction of MP genes from the mitochondrial and nuclear genomes given their over-expression in tissues with high energy demand and co-expression in tissues. This highlights the importance of considering MP genes from both genomes in future studies related to mitochondrial functions and traits related to energy metabolism
Intruder bands and configuration mixing in the lead isotopes
A three-configuration mixing calculation is performed in the context of the
interacting boson model with the aim to describe recently observed collective
bands built on low-lying states in neutron-deficient lead isotopes. The
configurations that are included correspond to the regular, spherical states as
well as two-particle two-hole and four-particle four-hole excitations across
the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1
in this revised versio
- …