1 research outputs found
Fourier Transform Scanning Tunneling Spectroscopy: the possibility to obtain constant energy maps and the band dispersion using a local measurement
We present here an overview of the Fourier Transform Scanning Tunneling
spectroscopy technique (FT-STS). This technique allows one to probe the
electronic properties of a two-dimensional system by analyzing the standing
waves formed in the vicinity of defects. We review both the experimental and
theoretical aspects of this approach, basing our analysis on some of our
previous results, as well as on other results described in the literature. We
explain how the topology of the constant energy maps can be deduced from the FT
of dI/dV map images which exhibit standing waves patterns. We show that not
only the position of the features observed in the FT maps, but also their shape
can be explained using different theoretical models of different levels of
approximation. Thus, starting with the classical and well known expression of
the Lindhard susceptibility which describes the screening of electron in a free
electron gas, we show that from the momentum dependence of the susceptibility
we can deduce the topology of the constant energy maps in a joint density of
states approximation (JDOS). We describe how some of the specific features
predicted by the JDOS are (or are not) observed experimentally in the FT maps.
The role of the phase factors which are neglected in the rough JDOS
approximation is described using the stationary phase conditions. We present
also the technique of the T-matrix approximation, which takes into account
accurately these phase factors. This technique has been successfully applied to
normal metals, as well as to systems with more complicated constant energy
contours. We present results recently obtained on graphene systems which
demonstrate the power of this technique, and the usefulness of local
measurements for determining the band structure, the map of the Fermi energy
and the constant-energy maps.Comment: 33 pages, 15 figures; invited review article, to appear in Journal of
Physics D: Applied Physic