167 research outputs found
The quantized Hall effect in the presence of resistance fluctuations
We present an experimental study of mesoscopic, two-dimensional electronic
systems at high magnetic fields. Our samples, prepared from a low-mobility
InGaAs/InAlAs wafer, exhibit reproducible, sample specific, resistance
fluctuations. Focusing on the lowest Landau level we find that, while the
diagonal resistivity displays strong fluctuations, the Hall resistivity is free
of fluctuations and remains quantized at its value, . This is
true also in the insulating phase that terminates the quantum Hall series.
These results extend the validity of the semicircle law of conductivity in the
quantum Hall effect to the mesoscopic regime.Comment: Includes more data, changed discussio
Mesoscopic oscillations of the conductance of disordered metallic samples as a function of temperature
We show theoretically and experimentally that the conductance of small
disordered samples exhibits random oscillations as a function of temperature.
The amplitude of the oscillations decays as a power law of temperature, and
their characteristic period is of the order of the temperature itself
Visibility diagrams and experimental stripe structure in the quantum Hall effect
We analyze various properties of the visibility diagrams that can be used in
the context of modular symmetries and confront them to some recent experimental
developments in the Quantum Hall Effect. We show that a suitable physical
interpretation of the visibility diagrams which permits one to describe
successfully the observed architecture of the Quantum Hall states gives rise
naturally to a stripe structure reproducing some of the experimental features
that have been observed in the study of the quantum fluctuations of the Hall
conductance. Furthermore, we exhibit new properties of the visibility diagrams
stemming from the structure of subgroups of the full modular group.Comment: 8 pages in plain TeX, 7 figures in a single postscript fil
Two-terminal conductance fluctuations in the integer quantum Hall regime
Motivated by recent experiments on the conductance fluctuations in mesoscopic
integr quantum Hall systems, we consider a model in which the Coulomb
interactions are incorporated into the picture of edge-state transport through
a single saddle-point. The occupancies of `classical' localised states in the
two-dimensional electron system change due to the interactions between
electrons when the gate voltage on top of the device is varied. The
electrostatic potential between the localised states and the saddle-point
causes fluctuations of the saddle-point potential and thus fluctuations of the
transmission probability of edge states. This simple model is studied
numerically and compared with the observation.Comment: 6 pages with 3 figures. To be published in Physical Review
The origin of switching noise in GaAs/AlGaAs lateral gated devices
We have studied the origin of switching (telegraph) noise at low temperature
in lateral quantum structures defined electrostatically in GaAs/AlGaAs
heterostructures by surface gates. The noise was measured by monitoring the
conductance fluctuations around on the first step of a quantum point
contact at around 1.2 K. Cooling with a positive bias on the gates dramatically
reduces this noise, while an asymmetric bias exacerbates it. We propose a model
in which the noise originates from a leakage current of electrons that tunnel
through the Schottky barrier under the gate into the doped layer. The key to
reducing noise is to keep this barrier opaque under experimental conditions.
Bias cooling reduces the density of ionized donors, which builds in an
effective negative gate voltage. A smaller negative bias is therefore needed to
reach the desired operating point. This suppresses tunnelling from the gate and
hence the noise. The reduction in the density of ionized donors also
strengthens the barrier to tunneling at a given applied voltage. Support for
the model comes from our direct observation of the leakage current into a
closed quantum dot, around for this device. The current
was detected by a neighboring quantum point contact, which showed monotonic
steps in time associated with the tunneling of single electrons into the dot.
If asymmetric gate voltages are applied, our model suggests that the noise will
increase as a consequence of the more negative gate voltage applied to one of
the gates to maintain the same device conductance. We observe exactly this
behaviour in our experiments.Comment: 8 pages, 7 figure
Current carrying capacity of carbon nanotubes
The current carrying capacity of ballistic electrons in carbon nanotubes that
are coupled to ideal contacts is analyzed. At small applied voltages, where
electrons are injected only into crossing subbands, the differential
conductance is . At applied voltages larger than
( is the energy level spacing of first non crossing subbands),
electrons are injected into non crossing subbands. The contribution of these
electrons to current is determined by the competing processes of Bragg
reflection and Zener type inter subband tunneling. In small diameter nanotubes,
Bragg reflection dominates, and the maximum differential conductance is
comparable to . Inter subband Zener tunneling can be non negligible as
the nanotube diameter increases because is inversely
proportional to the diameter. As a result, with increasing nanotube diameter,
the differential conductance becomes larger than , though not
comparable to the large number of subbands into which electrons are injected
from the contacts. These results may be relevant to recent experiments in large
diameter multi-wall nanotubes that observed conductances larger than .Comment: 12 pages, 4 figure
Conductance Correlations Near Integer Quantum Hall Transitions
In a disordered mesoscopic system, the typical spacing between the peaks and
the valleys of the conductance as a function of Fermi energy is called
the conductance energy correlation range . Under the ergodic hypothesis,
the latter is determined by the half-width of the ensemble averaged conductance
correlation function: . In
ordinary diffusive metals, , where is the diffusion constant
and is the linear dimension of the phase-coherent sample. However, near a
quantum phase transition driven by the location of the Fermi energy , the
above picture breaks down. As an example of the latter, we study, for the first
time, the conductance correlations near the integer quantum Hall transitions of
which is a critical coupling constant. We point out that the behavior of
is determined by the interplay between the static and the dynamic
properties of the critical phenomena.Comment: 4 pages, 4 figures, minor corrections, to appear in Phys. Rev. Let
Spin states of the first four holes in a silicon nanowire quantum dot
We report measurements on a silicon nanowire quantum dot with a clarity that
allows for a complete understanding of the spin states of the first four holes.
First, we show control of the hole number down to one. Detailed measurements at
perpendicular magnetic fields reveal the Zeeman splitting of a single hole in
silicon. We are able to determine the ground-state spin configuration for one
to four holes occupying the quantum dot and find a spin filling with
alternating spin-down and spin-up holes, which is confirmed by
magnetospectroscopy up to 9T. Additionally, a so far inexplicable feature in
single-charge quantum dots in many materials systems is analyzed in detail. We
observe excitations of the zero-hole ground-state energy of the quantum dot,
which cannot correspond to electronic or Zeeman states. We show that the most
likely explanation is acoustic phonon emission to a cavity between the two
contacts to the nanowire.Comment: 24 pages, 8 figures, both including supporting informatio
- …
