202 research outputs found

    OWidgets: A toolkit to enable smell-based experience design

    Get PDF
    Interactive technologies are transforming the ways in which people experience, interact and share information. Advances in technology have made it possible to generate real and virtual environments with breath-taking graphics and high-fidelity audio. However, without stimulating the other senses such as touch and smell, and even taste in some cases, such experiences feel hollow and fictitious; they lack realism. One of the main stumbling blocks for progress towards creating truly compelling multisensory experiences is the lack of appropriate tools and guidance for designing beyond audio-visual applications. Here we focus particularly on the sense of smell and how smell-based design can be enabled to create novel user experiences. We present a design toolkit for smell (i.e., OWidgets). The toolkit consists of a graphical user interface and the underlying software framework. The framework uses two main components: a Mapper and Scheduler facilitating the device-independent replication of olfactory experiences. We discuss how our toolkit reduces the complexity of designing with smell and enables a creative exploration based on specific design features. We conclude by reflecting on future directions to extend the toolkit and integrate it into the wider audio-visual ecosystem

    Charge Pumping in Carbon Nanotubes

    Get PDF
    We demonstrate charge pumping in semiconducting carbon nanotubes by a traveling potential wave. From the observation of pumping in the nanotube insulating state we deduce that transport occurs by packets of charge being carried along by the wave. By tuning the potential of a side gate, transport of either electron or hole packets can be realized. Prospects for the realization of nanotube based single-electron pumps are discussed

    Communicating cosmology with multisensory metaphorical experiences

    Get PDF
    We present a novel approach to communicating abstract concepts in cosmology and astrophysics in a more accessible and inclusive manner. We describe an exhibit aiming at creating an immersive, multisensory metaphorical experience of an otherwise imperceptible physical phenomenon-dark matter. Human-Computer Interaction experts and physicists co-created a multisensory journey through dark matter by exploiting the latest advances in haptic and olfactory technology. We present the concept design of a pilot and a second, improved event, both held at the London Science Museum, including the practical setup of the multisensory dark matter experience, the delivery of sensory stimulation and preliminary insights from users' feedback

    Communicating cosmology with multisensory metaphorical experiences

    Get PDF
    We present a novel approach to communicating abstract concepts in cosmology and astrophysics in a more accessible and inclusive manner. We describe an exhibit aiming at creating an immersive, multisensory metaphorical experience of an otherwise imperceptible physical phenomenon-dark matter. Human-Computer Interaction experts and physicists co-created a multisensory journey through dark matter by exploiting the latest advances in haptic and olfactory technology. We present the concept design of a pilot and a second, improved event, both held at the London Science Museum, including the practical setup of the multisensory dark matter experience, the delivery of sensory stimulation and preliminary insights from users' feedback

    Visibility diagrams and experimental stripe structure in the quantum Hall effect

    Full text link
    We analyze various properties of the visibility diagrams that can be used in the context of modular symmetries and confront them to some recent experimental developments in the Quantum Hall Effect. We show that a suitable physical interpretation of the visibility diagrams which permits one to describe successfully the observed architecture of the Quantum Hall states gives rise naturally to a stripe structure reproducing some of the experimental features that have been observed in the study of the quantum fluctuations of the Hall conductance. Furthermore, we exhibit new properties of the visibility diagrams stemming from the structure of subgroups of the full modular group.Comment: 8 pages in plain TeX, 7 figures in a single postscript fil

    The quantized Hall effect in the presence of resistance fluctuations

    Full text link
    We present an experimental study of mesoscopic, two-dimensional electronic systems at high magnetic fields. Our samples, prepared from a low-mobility InGaAs/InAlAs wafer, exhibit reproducible, sample specific, resistance fluctuations. Focusing on the lowest Landau level we find that, while the diagonal resistivity displays strong fluctuations, the Hall resistivity is free of fluctuations and remains quantized at its ν=1\nu=1 value, h/e2h/e^{2}. This is true also in the insulating phase that terminates the quantum Hall series. These results extend the validity of the semicircle law of conductivity in the quantum Hall effect to the mesoscopic regime.Comment: Includes more data, changed discussio

    Spin configurations of carbon nanotube in a nonuniform external potential

    Full text link
    We study, theoretically, the ground state spin of a carbon nanotube in the presence of an external potential. We find that when the external potential is applied to a part of the nanotube, its variation changes the single electron spectrum significantly. This, in combination with Coulomb repulsion and the symmetry properties of a finite length armchair nanotube induces spin flips in the ground state when the external potential is varied. We discuss the possible application of our theory to recent measurements of Coulomb blocked peaks and their dependence on a weak magnetic field in armchair carbon nanotubes.Comment: RevTeX, 5 pages + two figure
    • …
    corecore