11 research outputs found

    Array-based DNA methylation profiling of primary lymphomas of the central nervous system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although primary lymphomas of the central nervous system (PCNSL) and extracerebral diffuse large B-cell lymphoma (DLBCL) cannot be distinguished histologically, it is still a matter of debate whether PCNSL differ from systemic DLBCL with respect to their molecular features and pathogenesis. Analysis of the DNA methylation pattern might provide further data distinguishing these entities at a molecular level.</p> <p>Methods</p> <p>Using an array-based technology we have assessed the DNA methylation status of 1,505 individual CpG loci in five PCNSL and compared the results to DNA methylation profiles of 49 DLBCL and ten hematopoietic controls.</p> <p>Results</p> <p>We identified 194 genes differentially methylated between PCNSL and normal controls. Interestingly, Polycomb target genes and genes with promoters showing a high CpG content were significantly enriched in the group of genes hypermethylated in PCNSL. However, PCNSL and systemic DLBCL did not differ in their methylation pattern.</p> <p>Conclusions</p> <p>Based on the data presented here, PCNSL and DLBCL do not differ in their DNA methylation pattern. Thus, DNA methylation analysis does not support a separation of PCNSL and DLBCL into individual entities. However, PCNSL and DLBCL differ in their DNA methylation pattern from non- malignant controls.</p

    A note on characterizations of the geometric distribution

    No full text

    Systems biology of primary CNS lymphoma: from genetic aberrations to modeling in mice

    No full text
    Primary lymphoma of the central nervous system (CNS, PCNSL) is a specific diffuse large B cell lymphoma entity arising in and confined to the CNS. Despite extensive research since many decades, the pathogenetic mechanisms underlying the remarkable tropism of this peculiar malignant hematopoietic tumor remain still to be elucidated. In the present review, we summarize the present knowledge on the genotypic and phenotypic characteristics of the tumor cells of PCNSL, give an overview over deregulated molecular pathways in PCNSL and present recent progress in the field of preclinical modeling of PCNSL in mice. With regard to the phenotype, PCNSL cells resemble late germinal center exit IgM+IgD+ B cells with blocked terminal B cell differentiation. They show continued BCL6 activity in line with ongoing activity of the germinal center program. This together with the pathways deregulated by genetic alterations may foster B cell activation and brisk proliferation, which correlated with the simultaneous MYC and BCL2 overexpression characteristic for PCNSL. On the genetic level, PCNSL are characterized by ongoing aberrant somatic hypermutation that, besides the IG locus, targets the PAX5, TTF, MYC, and PIM1 genes. Moreover, PCNSL cells show impaired IG class switch due to s mu region deletions, and PRDM1 mutations. Several important pathways, i.e., the B cell receptor (BCR), the toll-like receptor, and the nuclear factor-kappa B pathway, are activated frequently due to genetic changes affecting genes like CD79B, SHIP, CBL, BLNK, CARD11, MALT1, BCL2, and MYD88. These changes likely foster tumor cell survival. Nevertheless, many of these features are also present in subsets of systemic DLBLC and might not be the only reasons for the peculiar tropism of PCNSL. Here, preclinical animal models that closely mimic the clinical course and neuropathology of human PCNSL may provide further insight and we discuss recent advances in this field. Such models enable us to understand the pathogenetic interaction between the malignant B cells, resident cell populations of the CNS, and the associated inflammatory infiltrate. Indeed, the immunophenotype of the CNS as well as tumor cell characteristics and intracerebral interactions may create a micromilieu particularly conducive to PCNSL that may foster aggressiveness of tumor cells and accelerate the fatal course of disease. Suitable animal models may also serve as a well-defined preclinical system and may provide a useful tool for developing new specific therapeutic strategies
    corecore