28 research outputs found
The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants
Additive manufactured, porous bone implants have the potential to improve osseointegration and reduce failure rates of orthopaedic devices. Substantially porous implants are increasingly used in a number of orthopaedic applications. HA plasma spraying-a line of sight process-cannot coat the inner surfaces of substantially porous structures, whereas electrochemical deposition of calcium phosphate can fully coat the inner surfaces of porous implants for improved bioactivity, but the osseous response of different types of hydroxyapatite (HA) coatings with ionic substitutions has not been evaluated for implants in the same in vivo model. In this study, laser sintered Ti6Al4V implants with pore sizes of Ø 700 μm and Ø 1500 μm were electrochemically coated with HA, silicon-substituted HA (SiHA), and strontium-substituted HA (SrHA), and implanted in ovine femoral condylar defects. Implants were retrieved after 6 weeks and histological and histomorphometric evaluation were compared to electrochemically coated implants with uncoated and HA plasma sprayed controls. The HA, SiHA and SrHA coatings had Ca:P, Ca:(P+Si) and (Ca+Sr):P ratios of 1.53, 1.14 and 1.32 respectively. Electrochemically coated implants significantly promoted bone attachment to the implant surfaces of the inner pores and displayed improved osseointegration compared to uncoated scaffolds for both pore sizes (p<0.001), whereas bone ingrowth was restricted to the surface for HA plasma coated or uncoated implants. Electrochemically coated HA implants achieved the highest osseointegration, followed by SrHA coated implants, and both coatings exhibited significantly more bone growth than plasma sprayed groups (p≤0.01 for all 4 cases). SiHA had significantly more osseointegration when compared against the uncoated control, but no significant difference compared with other coatings. There was no significant difference in ingrowth or osseointegration between pore sizes, and the bone-implant-contact was significantly higher in the electrochemical HA than in SiHA or SrHA. These results suggest that osseointegration is insensitive to pore size, whereas surface modification through the presence of an osteoconductive coating plays an important role in improving osseointegration, which may be critically important for extensively porous implants
The effect of bone growth onto massive prostheses collars in protecting the implant from fracture
Limb-sparing distal femoral endoprotheses used in cancer patients have a high risk of aseptic loosening. It had been reported that young adolescent patients have a higher rate of loosening and fatigue fracture of intramedullary stems because the implant becomes undersized as patients grow. Extracortical bone growth into the grooved hydroxyapatite-coated collar had been shown to reduce failure rates. The stresses in the implant and femur have been calculated from Finite Element models for different stages of bone growth onto the collar. For a small diameter stem without any bone growth, a large stress concentration at the implant shoulder was found, leading to a significant fracture risk under normal walking loads. Bone growth and osseointergration onto the implant collar reduced the stress level in the implant to safe levels. For small bone bridges a risk of bone fracture was observed
A novel adaptive algorithm for 3D finite element analysis to model extracortical bone growth
Extracortical bone growth with osseointegration of bone onto the shaft of massive bone tumour implants is an important clinical outcome for long-term implant survival. A new computational algorithm combining geometrical shape changes and bone adaptation in 3D Finite Element simulations has been developed, using a soft tissue envelope mesh, a novel concept of osteoconnectivity, and bone remodelling theory. The effects of varying the initial tissue density, spatial influence function and time step were investigated. The methodology demonstrated good correspondence to radiological results for a segmental prosthesis
Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants
Bone loss caused by stress shielding of metallic implants is a concern, as it can potentially lead to long-term implant failure. Surface coating and reducing structural stiffness of implants are two ways to improve bone ingrowth and osteointegration. Additive manufacturing, through selective laser sintering (SLS) or electron beam melting (EBM) of metallic alloys, can produce porous implants with bone ingrowth regions that enhance osteointegration and improve clinical outcomes. Histology of porous Ti6Al4V plugs of two pore sizes with and without electrochemically deposited hydroxyapatite coating, implanted in ovine condyles, showed that bone formation did not penetrate deep into the porous structure, whilst significantly increased bone growth along coated pore surfaces (osteointegration) was observed. Finite Element simulations, combining new algorithms to model bone ingrowth and the effect of surface modification on osteoconduction, were verified with the histology results. The results showed stress shielding of porous implants made from conventional titanium alloy due to material stiffness and implant geometry, limiting ingrowth and osteointegration. Simulations for reduced implant material stiffness predicted increased bone ingrowth. For low modulus Titanium-tantalum alloy (Ti-70%Ta), reduced stress shielding and enhanced bone ingrowth into the porous implant was found, leading to improved mechanical interlock. Algorithms predicted osteoconductive coating to promote both osteointegration and bone ingrowth into the inner pores when they were coated. These new Finite Element algorithms show that using implant materials with lower elastic modulus, osteoconductive coatings or improved implant design could lead to increased bone remodelling that optimises tissue regeneration, fulfilling the potential of enhanced porosity and complex implant designs made possible by additive layer manufacturing techniques
Promising applications of D-amino acids in periprosthetic joint infection
Due to the rise in our aging population, a disproportionate demand for total joint arthroplasty (TJA) in the elderly is forecast. Periprosthetic joint infection (PJI) represents one of the most challenging complications that can occur following TJA, and as the number of primary and revision TJAs continues to rise, an increasing PJI burden is projected. Despite advances in operating room sterility, antiseptic protocols, and surgical techniques, approaches to prevent and treat PJI remain difficult, primarily due to the formation of microbial biofilms. This difficulty motivates researchers to continue searching for an effective antimicrobial strategy. The dextrorotatory-isoforms of amino acids (D-AAs) are essential components of peptidoglycan within the bacterial cell wall, providing strength and structural integrity in a diverse range of species. Among many tasks, D-AAs regulate cell morphology, spore germination, and bacterial survival, evasion, subversion, and adhesion in the host immune system. When administered exogenously, accumulating data have demonstrated that D-AAs play a pivotal role against bacterial adhesion to abiotic surfaces and subsequent biofilm formation; furthermore, D-AAs have substantial efficacy in promoting biofilm disassembly. This presents D-AAs as promising and novel targets for future therapeutic approaches. Despite their emerging antibacterial efficacy, their role in disrupting PJI biofilm formation, the disassembly of established TJA biofilm, and the host bone tissue response remains largely unexplored. This review aims to examine the role of D-AAs in the context of TJAs. Data to date suggest that D-AA bioengineering may serve as a promising future strategy in the prevention and treatment of PJI
Sphingolipid-induced bone regulation and its emerging role in dysfunction due to disease and infection
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field
A multifunctional therapeutic strategy using P7C3 as a countermeasure against bone loss and fragility in an ovariectomized rat model of postmenopausal osteoporosis
By 2060, an estimated one in four Americans will be elderly. Consequently, the prevalence of osteoporosis and fragility fractures will also increase. Presently, no available intervention definitively prevents or manages osteoporosis. This study explores whether Pool 7 Compound 3 (P7C3) reduces progressive bone loss and fragility following the onset of ovariectomy (OVX)-induced osteoporosis. Results confirm OVX-induced weakened, osteoporotic bone together with a significant gain in adipogenic body weight. Treatment with P7C3 significantly reduced osteoclastic activity, bone marrow adiposity, whole-body weight gain, and preserved bone area, architecture, and mechanical strength. Analyses reveal significantly upregulated platelet derived growth factor-BB and leukemia inhibitory factor, with downregulation of interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK. Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium, Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the favorable inflammatory, and adipo-osteogenic metabolic regulation observed. The results reveal an undiscovered, and multifunctional therapeutic strategy to prevent the pathological progression of OVX-induced bone loss
A novel ceramic coating for reduced metal ion release in metal-on-metal hip surgery
Abstract: An ovine total hip arthroplasty model was developed to evaluate metal ion release, wear, the biological response and adverse tissue reaction to metal-on-metal (MoM) bearing materials. The performance of an advanced superlattice ceramic coating (SLC) was evaluated as a bearing surface and experimental groups divided into; (1) MoM articulating surfaces coated with a SLC coating (SLC-MoM), (2) uncoated
MoM surfaces (MoM), and (3) metal on polyethylene (MoP) surfaces. Implants remained in vivo for 13 months and blood chromium (Cr) and cobalt (Co) metal ion levels were measured pre and postoperatively. Synovial tissue was graded using an ALVAL scoring system. When compared with the MoM group, sheep with SLC-MoM implants showed significantly lower levels of chromium and cobalt metal ions within blood over the 13-month period. Evidence of gray tissue staining was observed in the synovium of implants in the MOM group. A significantly lower ALVAL score was measured in the SLCMoM group (3.88) when compared with MoM components (6.67) (p = 0.010). ALVAL results showed no significant difference when SLC-MOM components were compared to MoP (5.25). This model was able to distinguish wear and the effect of released debris between different bearing combinations and demonstrated the effect of a SLC coating when applied onto the bearing surface