105 research outputs found
Recommended from our members
Binding to medium and long chain fatty acyls is a common property of HEAT and ARM repeat modules.
Covalent post-translational modification (PTM) of proteins with acyl groups of various carbon chain-lengths regulates diverse biological processes ranging from chromatin dynamics to subcellular localization. While the YEATS domain has been found to be a prominent reader of acetylation and other short acyl modifications, whether additional acyl-lysine reader domains exist, particularly for longer carbon chains, is unclear. Here, we employed a quantitative proteomic approach using various modified peptide baits to identify reader proteins of various acyl modifications. We discovered that proteins harboring HEAT and ARM repeats bind to lysine myristoylated peptides. Recombinant HEAT and ARM repeats bind to myristoylated peptides independent of the peptide sequence or the position of the myristoyl group. Indeed, HEAT and ARM repeats bind directly to medium- and long-chain free fatty acids (MCFA and LCFA). Lipidomic experiments suggest that MCFAs and LCFAs interact with HEAT and ARM repeat proteins in mammalian cells. Finally, treatment of cells with exogenous MCFAs and inhibitors of MCFA-CoA synthases increase the transactivation activity of the ARM repeat protein β-catenin. Taken together, our results suggest an unappreciated role for fatty acids in the regulation of proteins harboring HEAT or ARM repeats
Measurement of the Inclusive Semi-electronic Branching Fraction
Using the angular correlation between the emitted in a decay and the emitted in the subsequent decay, we have measured the branching fraction for the
inclusive semi-electronic decay of the meson to be: {\cal B}(D^0
\rightarrow X e^+ \nu) = [6.64 \pm 0.18 (stat.) \pm 0.29 (syst.)] \%. The
result is based on 1.7 fb of collisions recorded by the CLEO II
detector located at the Cornell Electron Storage Ring (CESR). Combining the
analysis presented in this paper with previous CLEO results we find,
\frac{{\cal B} (D^0 \rightarrow X e^+ \nu)}
{{\cal B} (D^0 \rightarrow K^- \pi^+)}
= 1.684 \pm 0.056 (stat.) \pm 0.093(syst.) and
\frac{{\cal B}(D\rightarrow K^-e^+\nu)}
{{\cal B}(D\rightarrow Xe^+\nu)}
= 0.581 \pm 0.023 (stat.) \pm 0.028(syst.).
The difference between the inclusive rate and the sum of the measured
exclusive branching fractions (measured at CLEO and other experiments) is of the inclusive rate.Comment: Latex file, 33pages, 4 figures Submitted to PR
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1
of pp collision data collected by the LHCb experiment at a centre-of-mass
energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 ->
phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the
first uncertainty is statistical, the second is the experimental systematic
uncertainty and the third is associated with the ratio of fragmentation
fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the
branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x
10^{-5}.
The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with
the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/-
0.9(syst.))%.
Both measurements are the most precise to date and are in agreement with the
previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table
4th Biennial Employment Law Institute
Materials from the 4th Biennial Employment Law Institute held by UK/CLE in June 1994
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
A Pilot Study of IL-2Rα Blockade during Lymphopenia Depletes Regulatory T-cells and Correlates with Enhanced Immunity in Patients with Glioblastoma
Preclinical studies in mice have demonstrated that the prophylactic depletion of immunosuppressive regulatory T-cells (T(Regs)) through targeting the high affinity interleukin-2 (IL-2) receptor (IL-2Rα/CD25) can enhance anti-tumor immunotherapy. However, therapeutic approaches are complicated by the inadvertent inhibition of IL-2Rα expressing anti-tumor effector T-cells.To determine if changes in the cytokine milieu during lymphopenia may engender differential signaling requirements that would enable unarmed anti-IL-2Rα monoclonal antibody (MAbs) to selectively deplete T(Regs) while permitting vaccine-stimulated immune responses.A randomized placebo-controlled pilot study was undertaken to examine the ability of the anti-IL-2Rα MAb daclizumab, given at the time of epidermal growth factor receptor variant III (EGFRvIII) targeted peptide vaccination, to safely and selectively deplete T(Regs) in patients with glioblastoma (GBM) treated with lymphodepleting temozolomide (TMZ).Daclizumab treatment (n = 3) was well-tolerated with no symptoms of autoimmune toxicity and resulted in a significant reduction in the frequency of circulating CD4+Foxp3+ TRegs in comparison to saline controls (n = 3)( p = 0.0464). A significant (p<0.0001) inverse correlation between the frequency of TRegs and the level of EGFRvIII specific humoral responses suggests the depletion of TRegs may be linked to increased vaccine-stimulated humoral immunity. These data suggest this approach deserves further study.ClinicalTrials.gov NCT00626015
First evidence for the two-body charmless baryonic decay B0→pp−
The results of a search for the rare two-body charmless baryonic decays B0→pp− and B0s→pp− are reported. The analysis uses a data sample, corresponding to an integrated luminosity of 0.9 fb−1, of pp collision data collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. An excess of B0→pp− candidates with respect to background expectations is seen with a statistical significance of 3.3 standard deviations. This is the first evidence for a two-body charmless baryonic B 0 decay. No significant B0s→pp− signal is observed, leading to an improvement of three orders of magnitude over previous bounds. If the excess events are interpreted as signal, the 68.3% confidence level intervals on the branching fractions are B(B0→pp−)=1.47+0.62+0.35−0.51−0.14×10−8,\hfillB(Bs→pp−)=2.84+2.03+0.85−1.68−0.18×10−8,\hfill where the first uncertainty is statistical and the second is systematic
Registered Ship Notes
https://digitalmaine.com/blue_hill_documents/1179/thumbnail.jp
- …