17 research outputs found

    Population pharmacokinetic modeling and dosing simulations of nitrogen-scavenging compounds: Disposition of glycerol phenylbutyrate and sodium phenylbutyrate in adult and pediatric patients with urea cycle disorders.

    No full text
    Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA

    Glycerol phenylbutyrate treatment in children with urea cycle disorders: Pooled analysis of short and long-term ammonia control and outcomes

    No full text
    OBJECTIVE: To evaluate glycerol phenylbutyrate (GPB) in the treatment of pediatric patients with urea cycle disorders (UCDs). STUDY DESIGN: UCD patients (n=26) ages 2months through 17years were treated with GPB and sodium phenylbutyrate (NaPBA) in two short-term, open-label crossover studies, which compared 24-hour ammonia exposure (AUC0-24) and glutamine levels during equivalent steady-state dosing of GPB and sodium phenylbutyrate (NaPBA). These 26 patients plus an additional 23 patients also received GPB in one of three 12-month, open label extension studies, which assessed long-term ammonia control, hyperammonemic (HA) crises, amino acid levels, and patient growth. RESULTS: Mean ammonia exposure on GPB was non-inferior to NaPBA in each of the individual crossover studies. In the pooled analyses, it was significantly lower on GPB vs. NaPBA (mean [SD] AUC0-24: 627 [302] vs. 872 [516] μmol/L; p=0.008) with significantly fewer abnormal values (15% on GPB vs. 35% on NaPBA; p=0.02). Mean ammonia levels remained within the normal range during 12months of GPB dosing and, when compared with the 12months preceding enrollment, a smaller percentage of patients (24.5% vs. 42.9%) experienced fewer (17 vs. 38) HA crises. Glutamine levels tended to be lower with GPB than with NaPBA during short-term dosing (mean [SD]: 660.8 [164.4] vs. 710.0 [158.7] μmol/L; p=0.114) and mean glutamine and branched chain amino acid levels, as well as other essential amino acids, remained within the normal range during 12months of GPB dosing. Mean height and weight Z-scores were within normal range at baseline and did not change significantly during 12months of GPB treatment. CONCLUSIONS: Dosing with GPB was associated with 24-hour ammonia exposure that was non-inferior to that during dosing with NaPBA in individual studies and significantly lower in the pooled analysis. Long-term GPB dosing was associated with normal levels of glutamine and essential amino acids, including branched chain amino acids, age-appropriate growth and fewer HA crises as compared with the 12month period preceding enrollment

    Single-Dose and Steady-State Pharmacokinetics of Tenofovir Disoproxil Fumarate in Human Immunodeficiency Virus-Infected Children

    No full text
    Tenofovir disoproxil fumarate (DF) is a potent nucleotide analog reverse transcriptase inhibitor approved for the treatment of human immunodeficiency virus (HIV)-infected adults. The single-dose and steady-state pharmacokinetics of tenofovir were evaluated following administration of tenofovir DF in treatment-experienced HIV-infected children requiring a change in antiretroviral therapy. Using increments of tenofovir DF 75-mg tablets, the target dose was 175 mg/m(2); the median administered dose was 208 mg/m(2). Single-dose pharmacokinetics were evaluated in 18 subjects, and the geometric mean area under the concentration-time curve from 0 h to ∞ (AUC(0-∞)) was 2,150 ng · h/ml and the geometric mean maximum concentration (C(max)) was 266 ng/ml. Subsequently, other antiretrovirals were added to each patient's regimen based upon treatment history and baseline viral resistance results. Steady-state pharmacokinetics were evaluated in 16 subjects at week 4. The steady-state, geometric mean AUC for the 24-h dosing interval was 2,920 ng · h/ml and was significantly higher than the AUC(0-∞) after the first dose (P = 0.0004). The geometric mean C(max) at steady state was 302 ng/ml. Tenofovir DF was generally very well tolerated. Steady-state tenofovir exposures in children receiving tenofovir DF-containing combination antiretroviral therapy approached values seen in HIV-infected adults (AUC, ∼3,000 ng · h/ml; C(max), ∼300 ng/ml) treated with tenofovir DF at 300 mg

    Self-reported treatment-associated symptoms among patients with urea cycle disorders participating in glycerol phenylbutyrate clinical trials.

    No full text
    BACKGROUND: Health care outcomes have been increasingly assessed through health-related quality of life (HRQoL) measures. While the introduction of nitrogen-scavenging medications has improved survival in patients with urea cycle disorders (UCDs), they are often associated with side effects that may affect patient compliance and outcomes. METHODS: Symptoms commonly associated with nitrogen-scavenging medications were evaluated in 100 adult and pediatric participants using a non-validated UCD-specific questionnaire. Patients or their caregivers responded to a pre-defined list of symptoms known to be associated with the use of these medications. Responses were collected at baseline (while patients were receiving sodium phenylbutyrate [NaPBA]) and during treatment with glycerol phenylbutyrate (GPB). RESULTS: After 3 months of GPB dosing, there were significant reductions in the proportion of patients with treatment-associated symptoms (69% vs. 46%; p CONCLUSIONS: The reduction in symptoms following 3 months of open-label GPB dosing was similar in pediatric and adult patients and may be related to chemical structure and intrinsic characteristics of the product rather than its effect on ammonia control
    corecore