2,120 research outputs found
Molecular basis of hyper-thermostability in the thermophilic archaeal aldolase MfnB
\ua9 The Author(s) 2024.Methanogenic archaea are chemolithotrophic prokaryotes that can reduce carbon dioxide with hydrogen gas to form methane. These microorganisms make a significant contribution to the global carbon cycle, with methanogenic archaea from anoxic environments estimated to contribute > 500 million tons of global methane annually. Archaeal methanogenesis is dependent on the methanofurans; aminomethylfuran containing coenzymes that act as the primary C1 acceptor molecule during carbon dioxide fixation. Although the biosynthetic pathway to the methanofurans has been elucidated, structural adaptations which confer thermotolerance to Mfn enzymes from extremophilic archaea are yet to be investigated. Here we focus on the methanofuran biosynthetic enzyme MfnB, which catalyses the condensation of two molecules of glyceralde-3-phosphate to form 4‑(hydroxymethyl)-2-furancarboxaldehyde-phosphate. In this study, MfnB enzymes from the hyperthermophile Methanocaldococcus jannaschii and the mesophile Methanococcus maripaludis have been recombinantly overexpressed and purified to homogeneity. Thermal unfolding studies, together with steady-state kinetic assays, demonstrate thermoadaptation in the M. jannaschii enzyme. Molecular dynamics simulations have been used to provide a structural explanation for the observed properties. These reveal a greater number of side chain interactions in the M. jannaschii enzyme, which may confer protection from heating effects by enforcing spatial residue constraints
Change in First Graders’ Science-Related Competence Beliefs During Digitally Intensive Science Workshops
The aim of this research was to examine if a set of three science and technology workshops would promote first-grade pupils’ science-related competence beliefs. The first workshop dealt with electric circuits and related handicraft tasks. The second workshop involved programming with Lego Mindstorms robots. The third workshop was related to computer-based data logging. Fifty-nine Finnish first graders (age 7–8 years) participated in the digitally intensive science workshops, and 38 pupils served as a control group. The data were analysed using a paired samples t-test. The analysis results reveal that the set of three workshops increased the pupils’ science and technology-related competence beliefs.Peer reviewe
Prediction of photoperiodic regulators from quantitative gene circuit models
Photoperiod sensors allow physiological adaptation to the changing seasons. The external coincidence hypothesis postulates that a light-responsive regulator is modulated by a circadian rhythm. Sufficient data are available to test this quantitatively in plants, though not yet in animals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their lightsensitive proteins are thought to form an external coincidence sensor. We use 40 timeseries of molecular data to model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, the models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modelling makes this complexity explicit and may thus contribute to crop improvement
Detection of infectious disease outbreaks in twenty-two fragile states, 2000-2010: a systematic review.
Fragile states are home to a sixth of the world's population, and their populations are particularly vulnerable to infectious disease outbreaks. Timely surveillance and control are essential to minimise the impact of these outbreaks, but little evidence is published about the effectiveness of existing surveillance systems. We did a systematic review of the circumstances (mode) of detection of outbreaks occurring in 22 fragile states in the decade 2000-2010 (i.e. all states consistently meeting fragility criteria during the timeframe of the review), as well as time lags from onset to detection of these outbreaks, and from detection to further events in their timeline. The aim of this review was to enhance the evidence base for implementing infectious disease surveillance in these complex, resource-constrained settings, and to assess the relative importance of different routes whereby outbreak detection occurs.We identified 61 reports concerning 38 outbreaks. Twenty of these were detected by existing surveillance systems, but 10 detections occurred following formal notifications by participating health facilities rather than data analysis. A further 15 outbreaks were detected by informal notifications, including rumours.There were long delays from onset to detection (median 29 days) and from detection to further events (investigation, confirmation, declaration, control). Existing surveillance systems yielded the shortest detection delays when linked to reduced barriers to health care and frequent analysis and reporting of incidence data.Epidemic surveillance and control appear to be insufficiently timely in fragile states, and need to be strengthened. Greater reliance on formal and informal notifications is warranted. Outbreak reports should be more standardised and enable monitoring of surveillance systems' effectiveness
First GIS analysis of modern stone tools used by wild chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa
Stone tool use by wild chimpanzees of West Africa offers a unique opportunity to explore the evolutionary roots of technology during human evolution. However, detailed analyses of chimpanzee stone artifacts are still lacking, thus precluding a comparison with the earliest archaeological record. This paper presents the first systematic study of stone tools used by wild chimpanzees to crack open nuts in Bossou (Guinea-Conakry), and applies pioneering analytical techniques to such artifacts. Automatic morphometric GIS classification enabled to create maps of use wear over the stone tools (anvils, hammers, and hammers/anvils), which were blind tested with GIS spatial analysis of damage patterns identified visually. Our analysis shows that chimpanzee stone tool use wear can be systematized and specific damage patterns discerned, allowing to discriminate between active and passive pounders in lithic assemblages. In summary, our results demonstrate the heuristic potential of combined suites of GIS techniques for the analysis of battered artifacts, and have enabled creating a referential framework of analysis in which wild chimpanzee battered tools can for the first time be directly compared to the early archaeological record.Leverhulme Trust [IN-052]; MEXT [20002001, 24000001]; JSPS-U04-PWS; FCT-Portugal [SFRH/BD/36169/2007]; Wenner-Gren Foundation for Anthropological Researc
Architecture of an Antagonistic Tree/Fungus Network: The Asymmetric Influence of Past Evolutionary History
Compartmentalization and nestedness are common patterns in ecological networks. The aim of this study was to elucidate some of the processes shaping these patterns in a well resolved network of host/pathogen interactions.Based on a long-term (1972-2005) survey of forest health at the regional scale (all French forests; 15 million ha), we uncovered an almost fully connected network of 51 tree taxa and 157 parasitic fungal species. Our analyses revealed that the compartmentalization of the network maps out the ancient evolutionary history of seed plants, but not the ancient evolutionary history of fungal species. The very early divergence of the major fungal phyla may account for this asymmetric influence of past evolutionary history. Unlike compartmentalization, nestedness did not reflect any consistent phylogenetic signal. Instead, it seemed to reflect the ecological features of the current species, such as the relative abundance of tree species and the life-history strategies of fungal pathogens. We discussed how the evolution of host range in fungal species may account for the observed nested patterns.Overall, our analyses emphasized how the current complexity of ecological networks results from the diversification of the species and their interactions over evolutionary times. They confirmed that the current architecture of ecological networks is not only dependent on recent ecological processes
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)
DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses
Alpha-1-antitrypsin phenotypes in adult liver disease patients
Alpha-1-antitrypsin (AAT) is an important serine protease inhibitor in humans. Hereditary alpha-1-antitrypsin deficiency (AATD) affects lungs and liver. Liver disease caused by AATD in paediatric patients has been previously well documented. However, the association of liver disease with alpha-1-antitrypsin gene polymorphisms in adults is less clear. Therefore, we aimed to study AAT polymorphisms in adults with liver disease. We performed a case-control study. AAT polymorphisms were investigated by isoelectric focusing in 61 patients with liver cirrhosis and 9 patients with hepatocellular carcinoma. The control group consisted of 218 healthy blood donors. A significant deviation of observed and expected frequency of AAT phenotypes from Hardy-Weinberg equilibrium (chi-square = 34.77, df 11, P = 0.000) in the patient group was caused by a higher than expected frequency of Pi ZZ homozygotes (f = 0.0143 and f = 0.0005, respectively, P = 0.000). In addition, Pi M homozygotes were more frequent in patients than in controls (63% and 46%, respectively, P = 0.025). Our study results show that Pi ZZ homozygosity in adults could be associated with severe liver disease. Presence of Pi M homozygosity could be associated with liver disease via some mechanism different from Z allele-induced liver damage through accumulation of AAT polymers
Wastewater-based epidemiology in hazard forecasting and early-warning systems for global health risks
With the advent of the SARS-CoV-2 pandemic, Wastewater-Based Epidemiology (WBE) has been applied to track community infection in cities worldwide and has proven succesful as an early warning system for identification of hotspots and changingprevalence of infections (both symptomatic and asymptomatic) at a city or sub-city level. Wastewater is only one of environmental compartments that requires consideration. In this manuscript, we have critically evaluated the knowledge-base and preparedness for building early warning systems in a rapidly urbanising world, with particular attention to Africa, which experiences rapid population growth and urbanisation. We have proposed a Digital Urban Environment Fingerprinting Platform (DUEF) – a new approach in hazard forecasting and early-warning systems for global health risks and an extension to the existing concept of smart cities. The urban environment (especially wastewater) contains a complex mixture of substances including toxic chemicals, infectious biological agents and human excretion products. DUEF assumes that these specific endo- and exogenous residues, anonymously pooled by communities’ wastewater, are indicative of community-wide exposure and the resulting effects. DUEF postulates that the measurement of the substances continuously and anonymously pooled by the receiving environment (sewage, surface water, soils and air), can provide near real-time dynamic information about the quantity and type of physical, biological or chemical stressors to which the surveyed systems are exposed, and can create a risk profile on the potential effects of these exposures. Successful development and utilisation of a DUEF globally requires a tiered approach including: Stage I: network building, capacity building, stakeholder engagement as well as a conceptual model, followed by Stage II: DUEF development, Stage III: implementation, and Stage IV: management and utilization. We have identified four key pillars required for the establishment of a DUEF framework: (1) Environmental fingerprints, (2) Socioeconomic fingerprints, (3) Statistics and modelling and (4) Information systems. This manuscript critically evaluates the current knowledge base within each pillar and provides recommendations for further developments with an aim of laying grounds for successful development of global DUEF platforms
- …