21,019 research outputs found

    Weak response of nuclei

    Full text link
    We discuss some differences and similarities between electron and neutrino scattering off atomic nuclei. We find that, in the giant resonance region, the two processes excite different nuclear modes, therefore the weak and the electromagnetic nuclear responses are rather different. In any case, the scattering of electrons and photons is the best guide we have to test the validity of our nuclear models and their prediction power. The experience in describing electromagnetic excitations of the nucleus, suggests that, when the nucleus is excited in the continuum, the re-interaction between the emitted nucleon and the remaining nucleus should not be neglected. A simple model taking into account this final state interaction is proposed, and applied to the neutrino scattering off 16O nucleus.Comment: To appear in the proceedings of the workshop "Electron-Nucleus Scattering VIII", Marciana Marina, Elba (It), jUNE 21-2

    Proton emission induced by polarized photons

    Get PDF
    The proton emission induced by polarized photons is studied in the energy range above the giant resonance region and below the pion emission threshold. Results for the 12C, 16O and 40Ca nuclei are presented. The sensitivity of various observables to final state interaction, meson exchange currents and short range correlations is analyzed. We found relevant effects due to the virtual excitation of the Δ\Delta resonance.Comment: 12 pages, 11 figures, 1 tabl

    Model calculations of doubly closed shell nuclei in CBF theory III. j-j coupling and isospin dependence

    Full text link
    Correlated Basis Function theory and Fermi Hypernetted Chain technique are extended to study medium-heavy, doubly closed shell nuclei in j-j coupling scheme, with different single particle wave functions for protons and neutrons and isospin dependent two-body correlations. Central semirealistic interactions are used. Ground state energies, one-body densities, distribution functions and momentum distributions are calculated for 12C, 16O, 40Ca, 48Ca and 208Pb nuclei. The values of the ground state energies provided by isospin dependent correlations are lower than those obtained with isospin independent correlations. In finite nuclear systems, the two--body Euler equations provide correlation functions variationally more effective than those obtained with the same technique in infinite nuclear matter.Comment: 29 Latex pages plus 6 Postscript figure

    A model of short-range correlations in the charge response

    Get PDF
    The validity of a model treating the short-range correlations up to the first order is studied by calculating the charge response of an infinite system and comparing the obtained results with those of a Fermi Hypernetted Chain calculation.Comment: 6 pages, 3 Postscript figures, to be published on Phys. Rev.

    Magnetic excitations in nuclei with neutron excess

    Full text link
    The excitation of the 1+1^+, 2−2^- and 3+3^+ modes in 16^{16}O, 22^{22}O, 24^{24}O, 28^{28}O, 40^{40}Ca, 48^{48}Ca, 52^{52}Ca and 60^{60}Ca nuclei is studied with self-consistent random phase approximation calculations. Finite-range interactions of Gogny type, containing also tensor-isospin terms, are used. We analyze the evolution of the magnetic resonances with the increasing number of neutrons, the relevance of collective effects, the need of a correct treatment of the continuum and the role of the tensor force.Comment: 18 pages, 12 figures, 2 tables, accepted for publication in Physical Review

    Low-lying magnetic excitations of doubly-closed-shell nuclei and nucleon-nucleon effective interactions

    Full text link
    We have studied the low lying magnetic spectra of 12C, 16O, 40Ca, 48Ca and 208Pb nuclei within the Random Phase Approximation (RPA) theory, finding that the description of low-lying magnetic states of doubly-closed-shell nuclei imposes severe constraints on the spin and tensor terms of the nucleon-nucleon effective interaction. We have first made an investigation by using four phenomenological effective interactions and we have obtained good agreement with the experimental magnetic spectra, and, to a lesser extent, with the electron scattering responses. Then we have made self-consistent RPA calculations to test the validity of the finite-range D1 Gogny interaction. For all the nuclei under study we have found that this interaction inverts the energies of all the magnetic states forming isospin doublets.Comment: 19 pages, 13 figures, 7 tables, accepted for publication in Phys. Rev.

    A study of self-consistent Hartree-Fock plus Bardeen-Cooper-Schrieffer calculations with finite-range interactions

    Full text link
    In this work we test the validity of a Hartree-Fock plus Bardeen-Cooper-Schrieffer model in which a finite-range interaction is used in the two steps of the calculation by comparing the results obtained to those found in a fully self-consistent Hartree-Fock-Bogoliubov calculations using the same interaction.Specifically, we consider the Gogny-type D1S and D1M forces. We study a wide range of spherical nuclei, far from the stability line, in various regions of the nuclear chart, from oxygen to tin isotopes. We calculate various quantities related to the ground state properties of these nuclei, such as binding energies, radii, charge and density distributions and elastic electron scattering cross sections. The pairing effects are studied by direct comparison with the Hartree-Fock results. Despite of its relative simplicity, in most of the cases, our model provides results very close to those of the Hartree-Fock-Bogoliubov calculations, and it reproduces rather well the empirical evidences of pairing effects in the nuclei investigated.Comment: 28 pages, 13 figures. Accepted for publication in J. Phys.
    • 

    corecore