35 research outputs found

    Osteogenesis evaluation of duck’s feet derived collagen/hydroxyapatite sponges immersed in dexamethasone

    Get PDF
    Background: The aim of this study was to investigate the osteogenesis effects of DC and DC/HAp sponge immersed in without and with dexamethasone. Methods: The experimental groups in this study were DC and DC/HAp sponge immersed in without dexamethasone (Dex(â )DC and Dex(â )-DC/HAp group) and with dexamethasone (Dex(+)-DC and Dex(+)-DC/HAp group). We characterized DC and DC/HAp sponge using compressive strength, scanning electron microscopy (SEM). Also, osteogenic differentiation of BMSCs on sponge (Dex(â )DC, Dex(â )-DC/HAp, Dex(+)-DC and Dex(+)-DC/HAp group) was assessed by SEM, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assay, alkaline phosphatase (ALP) activity assay and reverse transcription-PCR (RT-PCR). Results: In this study, we assessed osteogenic differentiation of BMSCs on Duckâ s feet-derived collagen (DC)/ HAp sponge immersed with dexamethasone Dex(+)-DC/HAp. These results showed that Dex(+)-DC/HAp group increased cell proliferation and osteogenic differentiation of BMSCs during 28 days. Conclusion: From these results, Dex(+)-DC/HAp can be envisioned as a potential biomaterial for bone regeneration applications.This work was supported by Technology Commercialization Support Program [grant number 814005-03-3-HD020], Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF).info:eu-repo/semantics/publishedVersio

    A framework for the first‑person internal sensation of visual perception in mammals and a comparable circuitry for olfactory perception in Drosophila

    Get PDF
    Perception is a first-person internal sensation induced within the nervous system at the time of arrival of sensory stimuli from objects in the environment. Lack of access to the first-person properties has limited viewing perception as an emergent property and it is currently being studied using third-person observed findings from various levels. One feasible approach to understand its mechanism is to build a hypothesis for the specific conditions and required circuit features of the nodal points where the mechanistic operation of perception take place for one type of sensation in one species and to verify it for the presence of comparable circuit properties for perceiving a different sensation in a different species. The present work explains visual perception in mammalian nervous system from a first-person frame of reference and provides explanations for the homogeneity of perception of visual stimuli above flicker fusion frequency, the perception of objects at locations different from their actual position, the smooth pursuit and saccadic eye movements, the perception of object borders, and perception of pressure phosphenes. Using results from temporal resolution studies and the known details of visual cortical circuitry, explanations are provided for (a) the perception of rapidly changing visual stimuli, (b) how the perception of objects occurs in the correct orientation even though, according to the third-person view, activity from the visual stimulus reaches the cortices in an inverted manner and (c) the functional significance of well-conserved columnar organization of the visual cortex. A comparable circuitry detected in a different nervous system in a remote species-the olfactory circuitry of the fruit fly Drosophila melanogaster-provides an opportunity to explore circuit functions using genetic manipulations, which, along with high-resolution microscopic techniques and lipid membrane interaction studies, will be able to verify the structure-function details of the presented mechanism of perception

    Protein Glycosylation in Helicobacter pylori: Beyond the Flagellins?

    Get PDF
    Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori

    Meiotic Recombination Intermediates Are Resolved with Minimal Crossover Formation during Return-to-Growth, an Analogue of the Mitotic Cell Cycle

    Get PDF
    Accurate segregation of homologous chromosomes of different parental origin (homologs) during the first division of meiosis (meiosis I) requires inter-homolog crossovers (COs). These are produced at the end of meiosis I prophase, when recombination intermediates that contain Holliday junctions (joint molecules, JMs) are resolved, predominantly as COs. JM resolution during the mitotic cell cycle is less well understood, mainly due to low levels of inter-homolog JMs. To compare JM resolution during meiosis and the mitotic cell cycle, we used a unique feature of Saccharomyces cerevisiae, return to growth (RTG), where cells undergoing meiosis can be returned to the mitotic cell cycle by a nutritional shift. By performing RTG with ndt80 mutants, which arrest in meiosis I prophase with high levels of interhomolog JMs, we could readily monitor JM resolution during the first cell division of RTG genetically and, for the first time, at the molecular level. In contrast to meiosis, where most JMs resolve as COs, most JMs were resolved during the first 1.5–2 hr after RTG without producing COs. Subsequent resolution of the remaining JMs produced COs, and this CO production required the Mus81/Mms4 structure-selective endonuclease. RTG in sgs1-ΔC795 mutants, which lack the helicase and Holliday junction-binding domains of this BLM homolog, led to a substantial delay in JM resolution; and subsequent JM resolution produced both COs and NCOs. Based on these findings, we suggest that most JMs are resolved during the mitotic cell cycle by dissolution, an Sgs1 helicase-dependent process that produces only NCOs. JMs that escape dissolution are mostly resolved by Mus81/Mms4-dependent cleavage that produces both COs and NCOs in a relatively unbiased manner. Thus, in contrast to meiosis, where JM resolution is heavily biased towards COs, JM resolution during RTG minimizes CO formation, thus maintaining genome integrity and minimizing loss of heterozygosity

    Parallels between Pathogens and Gluten Peptides in Celiac Sprue

    Get PDF
    Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights
    corecore