23 research outputs found

    Effect of Ni and Al substitution on the magnetic properties of Y-type hexaferrite Ba0.5Sr1.5Zn0.5Ni1.5Fe11.92Al0.08O22powders

    Full text link
    peer reviewedThe effect is reported of substituting the non-magnetic Zn2+ cations with magnetic Ni2+ cations, and of the magnetic Fe3+ cations with non-magnetic Al3+ cations in Ba0.5Sr1.5Zn0.5Ni1.5Fe11.92Al0.08O22 on the resulting magnetic properties. The Y-type hexaferrite powders were synthesized by citric acid sol-gel auto-combustion, followed by appropriate thermal annealing. The saturation magnetization values (Ms ) in a magnetic field of 50 kOe were 36 emu/g and 30 emu/g at 4.2 K and 300 K, respectively. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization vs. temperature (4.2-300 K) were measured in dc magnetic fields of 50 Oe, 100 Oe and 500 Oe. The changes resulting from the dissimilar cationic substitutions were identified and discussed

    Effect of cation substitutions in Y-type Ba0.5Sr1.5Me2Fe12O22hexaferrites on the magnetic phase transitions

    Full text link
    peer reviewedWe investigated the magnetic properties and magnetic phase transition in Y-type Ba0.5Sr1.5NiMgFe12O22 hexaferrite powder prepared by citrate sol-gel spontaneous combustion. The saturation magnetisation value of 32 emu/g at 4.2 K was lowered to 24 emu/g at 300 K. The magnetisations curves did not saturate even at a magnetic field of 50 kOe for both temperatures - 4.2 K and 300 K. A step-like behaviour appeared in the initial magnetisation curve at 4.2 K. A magnetic phase transformation from a spiral magnetic ordering to a conical spin one was observed at 40 K

    Magnetic phase transitions in Ba0.5Sr1.5Zn2Fe11.92Al0.08O22hexaferrites

    Full text link
    peer reviewedWe report studies on the effect of substituting the magnetic Fe3+ cations with nonmagnetic Al3+ cations in Y-type hexaferrite Ba0.5Sr1.5Zn2Fe11.92Al0.08O22 powders on their magnetic properties and especially on the magnetic phase transitions responsible for observing the magnetoelectric effect. In this research, the Y-type hexaferrite powders were synthesized by citric acid sol-gel auto-combustion. After the auto-combustion process, the precursor powders were annealed at 1170 °C in air to obtain the Y-type hexaferrite materials. The effects of Al substitution on the structural, microstructural properties and phase content were investigated in detail using X-ray powder diffraction and scanning electron microscopy. Hysteresis measurements were performed by a physical-property-measurement-system (PPMS) (Quantum Design) at 4.2 K and at room temperature. Dc-magnetic measurements of the temperature dependence of the magnetization at magnetic fields of 50 Oe, 100 Oe and 500 Oe were used to determine the effect of applying a magnetic field on the temperature of magnetic-phase transitions. We demonstrated that the helical spin state can be modified further by varying the magnetic field

    Hexaferrite multiferroics: From bulk to thick films

    Full text link
    peer reviewedWe report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites. © Published under licence by IOP Publishing Ltd

    Influence of Fluorine and Nitrogen Co-Doping on the Structural and Morphological Properties of Sol-Gel ZnO Films

    Full text link
    peer reviewedThe structural, vibrational, optical and morphological properties of ZnO:N:F films, obtained by the sol-gel method, were investigated. The effect of single (fluorine, nitrogen) and F, N co-doping and thermal treatments (300–600 °C) on the properties of ZnO films was analyzed. X-ray Diffraction (XRD) revealed that ZnO:N:F films crystallized in a polycrystalline wurtzite structure. F and N incorporation changed lattice parameters, crystallite sizes, texture coefficients (TC) and residual stress. TC (002) of ZnO:N:F films increased with annealing, reaching 1.94 at 600 °C lower than the TC (002) of ZnO and ZnO:N films. The shifting of the characteristic absorption bands and/or the appearance of new IR lines were detected for ZnO:N:F samples. The highest transmittance (90.98%) in the visible spectral region was found for ZnO:F films. ZnO:N:F films possessed optical transparency up to 88.18% and their transmittance decreased at the higher annealings. The optical band gap (Eg) values of ZnO:N:F films were changed with fluorine and nitrogen concentrations. The formation of the wrinkle-like structures on the surface of ZnO and ZnO:N films was depicted in Field Emission Scanning Electron Microscopy (FESEM) images. The F, N dual doping modified ZnO morphology and suppressed wrinkle formation

    Structural and optical characterization of nitrogen and gallium co-doped ZnO thin films, deposited by sol-gel method

    Full text link
    Nitrogen and gallium co-doped ZnO films have been successfully obtained by a sol-gel technology using spin coating. ZnO:N, ZnO:Ga and co-doped (N, Ga) ZnO films are deposited on silicon and quartz substrates. The structural, morphological and optical properties of ZnO:N:Ga thin films are studied depending on the thermal treatments (300–600 °C) and the two dopants: N and Ga. The investigations of the doped ZnO films have been performed by using X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Field Emission Scanning Electron microscope (FESEM) and UV–VIS–NIR spectrophotometry. It has been found that the co-doped (N, Ga) ZnO films are crystallized in the wurtzite structure with no impurity phases. The optical transparency of ZnO:Ga and ZnO:N:Ga films is above 80% in the spectral range of 400–800 nm, revealing a significant improvement compared to undoped ZnO films. Gallium and nitrogen co-doping in ZnO results in the modification of the surface morphologies changing from wrinkle-like (undoped ZnO) to closed packed grained microstructure (ZnO:N:Ga films). © 2020 Elsevier B.V

    Additive manufacturing of hydroxyapatite: effect of some stereolithography parameters on the dimensional accuracy of green, debinded and sintered parts with different geometries

    Full text link
    peer reviewedWe report on the stereolithography printing of a hydroxyapatite powder dispersed in an acrylate-based resin with a focus on the influence of the laser power, the scanning speed and the layer thickness on the dimensional accuracy of the green, debinded and sintered parts and on the microstructural and mechanical properties of the sintered parts.Powdprin

    YBa2Cu3O7-x thick films on silver tubes for magnetic shielding applications

    Full text link
    YBa2Cu3O7-x (YBCO) thick films are investigated for magnetic shielding applications at low frequencies (< 1 kHz). This requires deposition of YBCO on curved substrates such as tubes, half-tubes or even more complex shapes. Electrophoretic Deposition (EPD) is an efficient method to achieve this goal: positively-charged YBCO particles suspended in a non aqueous medium drift towards the substrate, used as negative electrode for the application of the electric field. A crucial point is then to optimize the heat treatment of the as-deposited layers in order to achieve suitable superconducting properties. In the present work, we have developed a new suspension formulation in butanol, using a suitable surfactant to stabilize the suspension of YBCO powder (grain size < 2 µm). The EPD parameters (deposition voltage, deposition time, number of layers,...) have been selected to provide uniform layers of YBCO on silver substrates of various shapes. In the proposed communication, we shall discuss in detail the optimization of the heat treatments to achieve densification, peritectic recombination and oxygenation of the YBCO thick films deposited on silver. Scanning electron microscopy coupled with energy dispersive analysis was extensively used to characterize the (i) density / porosity, (ii) presence of macro-cracks, (iii) thickness uniformity, (iv) secondary phase content. We shall then present the characterization of the superconducting properties of the best films. Typically, a uniformly coated 55μm-thick YBCO film on a curved Ag substrate shows a magnetic Tc onset at 92.2 K and sharp resistive transition (< 1K)

    YBCO superconducting thick films: electrophoretic deposition (EPD) on non-planar silver substrates

    Full text link
    A new formulation of a stable YBa2Cu3O7-δ (YBCO) suspension is proposed in which butanol is preferred to the commonly-used acetone as the suspension medium. Appropriate surfactant has been used to develop the superficial charge on the YBCO particles in order to promote migration during the process of electrophoresis. YBCO thick films were deposited on silver tubes and half-tubes by electrophoretic deposition (EPD). The EPD parameters (deposition voltage, deposition time, number of layers etc.) were optimized with respect to the microstructural properties of the YBCO layers after an intermediate heat treatment at 920°C. An essential criterion is the minimization of macrocracks after the 920°C heat treatment, since it was found to favour good superconducting properties after the final heat treatment. This final heat treatment involves (i) partial melting above the peritectic temperature, (ii) peritectic recombination at lower temperature and (iii) reoxygenation at 500°C. Finally, the superconducting properties of the best films are discussed. A uniformly coated 55μm-thick YBCO film on a curved Ag substrate showed excellent superconducting properties with the onset of critical temperature at 92.2 K and an associated sharp resistive transition with transition width < 1 K

    Structural study of thick hexaferrite films

    Full text link
    peer reviewedWe present details of the microstructural properties of Y- (Ba2Mg2Fe12O22, Ba0.5Sr1.5Zn2Fe12O22, Ba0.5Sr1.5Zn2Al0.08Fe11.92O22) and Z-type (Sr3Co2Fe24O41) hexaferrite thick films deposited by screen printing and drop casting on unpolished polycrystalline Al2O3 substrates. The hexaferrites thick films obtained by drop casting exhibited considerable roughness and porousness compared with those obtained by screen printing. We found that the powders' morphology significantly affects the microstructure of the thick films formed by screen printing. The microstructural analysis of the thick films shows that their microstructure differs from that of the powders. Further, during the annealing process the grains in the thick films grow and form hexagonal particles, the latter having the largest size, best shape and being best observed in the case of the Ba2Mg2Fe12O22 film. © 2020 IOP Publishing Ltd. All rights reserved
    corecore