57 research outputs found

    Two tricritical lines from a Ginzburg-Landau expansion: application to the LOFF phase

    Full text link
    We study the behavior of the two plane waves configuration in the LOFF phase close to T=0. The study is performed by using a Landau-Ginzburg expansion up to the eighth order in the gap. The general study of the corresponding grand potential shows, under the assumption that the eighth term in the expansion is strictly positive, the existence of two tricritical lines. This allows to understand the existence of a second tricritical point for two antipodal plane waves in the LOFF phase and justifies why the transition becomes second order at zero temperature. The general analysis done in this paper can be applied to other cases.Comment: LaTex file, 15 pages, 6 figure

    Huge metastability in high-T_c superconductors induced by parallel magnetic field

    Full text link
    We present a study of the temperature-magnetic field phase diagram of homogeneous and inhomogeneous superconductivity in the case of a quasi-two-dimensional superconductor with an extended saddle point in the energy dispersion under a parallel magnetic field. At low temperature, a huge metastability region appears, limited above by a steep superheating critical field (H_sh) and below by a strongly reentrant supercooling field (H_sc). We show that the Pauli limit (H_p) for the upper critical magnetic field is strongly enhanced due to the presence of the Van Hove singularity in the density of states. The formation of a non-uniform superconducting state is predicted to be very unlikely.Comment: 5 pages, 2 figures; to appear in Phys. Rev.

    Homogeneous Fermion Superfluid with Unequal Spin Populations

    Full text link
    For decades, the conventional view is that an s-wave BCS superfluid can not support uniform spin polarization due to a gap Δ\Delta in the quasiparticle excitation spectrum. We show that this is an artifact of the dismissal of quasiparticle interactions VqpV_{qp}^{} in the conventional approach at the outset. Such interactions can cause triplet fluctuations in the ground state and hence non-zero spin polarization at "magnetic field" h<Δh<\Delta. The resulting ground state is a pairing state of quasiparticles on the ``BCS vacuum". For sufficiently large VqpV_{qp}, the spin polarization of at unitarity has the simple form m∝Ό1/2m\propto \mu^{1/2}. Our study is motivated by the recent experiments at Rice which found evidence of a homogenous superfluid state with uniform spin polarization.Comment: 4 pages, 3 figure

    Possible symmetries of the superconducting order parameter in a hexagonal ferromagnet

    Full text link
    We study the order parameter symmetry in a hexagonal crystal with co-existing superconductivity and ferromagnetism. An experimental example is provided by carbon-based materials, such as graphite-sulfur composites, in which an evidence of such co-existence has been recently discovered. The presence of a non-zero magnetization in the normal phase brings about considerable changes in the symmetry classification of superconducting states, compared to the non-magnetic case.Comment: 4 pages, REVTe

    Mass-Induced Crystalline Color Superconductivity

    Get PDF
    We demonstrate that crystalline color superconductivity may arise as a result of pairing between massless quarks and quarks with nonzero mass m_s. Previous analyses of this phase of cold dense quark matter have all utilized a chemical potential difference \delta\mu to favor crystalline color superconductivity over ordinary BCS pairing. In any context in which crystalline color superconductivity occurs in nature, however, it will be m_s-induced. The effect of m_s is qualitatively different from that of \delta\mu in one crucial respect: m_s depresses the value of the BCS gap \Delta_0 whereas \delta\mu leaves \Delta_0 unchanged. This effect in the BCS phase must be taken into account before m_s-induced and \delta\mu-induced crystalline color superconductivity can sensibly be compared.Comment: 12 pages, 4 figures. v2: very small change onl

    Order parameter symmetry in ferromagnetic superconductors

    Full text link
    We analyze the symmetry and the nodal structure of the superconducting order parameter in a cubic ferromagnet, such as ZrZn2_2. We demonstrate how the order parameter symmetry evolves when the electromagnetic interaction of the conduction electrons with the internal magnetic induction and the spin-orbit coupling are taken into account. These interactions break the cubic symmetry and lift the degeneracy of the order parameter. It is shown that the order parameter which appears immediately below the critical temperature has two components, and its symmetry is described by {\em co-representations} of the magnetic point groups. This allows us to make predictions about the location of the gap nodes.Comment: 12 pages, ReVTeX, submitted to PR

    Vortex dynamics and upper critical fields in ultrathin Bi films

    Full text link
    Current-voltage (I-V) characteristics of quench condensed, superconducting, ultrathin BiBi films in a magnetic field are reported. These I-V's show hysteresis for all films, grown both with and without thin GeGe underlayers. Films on Ge underlayers, close to superconductor-insulator transition (SIT), show a peak in the critical current, indicating a structural transformation of the vortex solid (VS). These underlayers, used to make the films more homogeneous, are found to be more effective in pinning the vortices. The upper critical fields (Bc2_{c2}) of these films are determined from the resistive transitions in perpendicular magnetic field. The temperature dependence of the upper critical field is found to differ significantly from Ginzburg-Landau theory, after modifications for disorder.Comment: Phys Rev B, to be published Figure 6 replaced with correct figur

    Mesoscopic interplay of superconductivity and ferromagnetism in ultra-small metallic grains

    Full text link
    We review the effects of electron-electron interactions on the ground-state spin and the transport properties of ultra-small chaotic metallic grains. Our studies are based on an effective Hamiltonian that combines a superconducting BCS-like term and a ferromagnetic Stoner-like term. Such terms originate in pairing and spin exchange correlations, respectively. This description is valid in the limit of a large dimensionless Thouless conductance. We present the ground-state phase diagram in the fluctuation-dominated regime where the single-particle mean level spacing is comparable to the bulk BCS pairing gap. This phase diagram contains a regime in which pairing and spin exchange correlations coexist in the ground-state wave function. We discuss the calculation of the tunneling conductance for an almost-isolated grain in the Coulomb-blockade regime, and present measurable signatures of the competition between superconductivity and ferromagnetism in the mesoscopic fluctuations of the conductance.Comment: 6 pages, 3 figures, To be published in the proceedings of the NATO Advance Research Workshop "Recent Advances in Nonlinear Dynamics and Complex System Physics.

    Anomalous Superconducting Properties and Field Induced Magnetism in CeCoIn5

    Full text link
    In the heavy fermion superconductor CeCoIn5 (Tc=2.3K) the critical field is large, anisotropic and displays hysteresis. The magnitude of the critical-field anisotropy in the a-c plane can be as large as 70 kOe and depends on orientation. Critical field measurements in the (110) plane suggest 2D superconductivity, whereas conventional effective mass anisotropy is observed in the (100) plane. Two distinct field-induced magnetic phases are observed: Ha appears deep in the superconducting phase, while Hb intersects Hc2 at T=1.4 K and extends well above Tc. These observations suggest the possible realization of a direct transition from ferromagnetism to Fulde-Ferrel-Larkin-Ovchinnikov superconductivity in CeCoIn5.Comment: 4 pages, 3 figure

    Interface superconductivity in the eutectic Sr2RuO4-Ru: 3-K phase of Sr2RuO4

    Get PDF
    The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting transition temperature Tc of ~3 K. We have investigated the field-temperature (H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have also investigated the dependence of Hc2 on the angle between the field and the ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass model apparently fails to reproduce the angle dependence, particularly near H // c and at low temperatures. We propose that all of these charecteric features can be explained, at least in a qualitative fashion, on the basis of a theory by Sigrist and Monien that assumes surface superconductivity with a two-component order parameter occurring at the interface between Sr2RuO4 and Ru inclusions. This provides evidence of the chiral state postulated for the 1.5-K phase by several experiments.Comment: 7 pages and 5 figs; accepted for publication in Phys. Rev.
    • 

    corecore