5 research outputs found

    Abstract 5118: Proteogenomics characterization of HPV-negative head and neck squamous cell carcinomas

    No full text
    Abstract Patients with head and neck squamous cell carcinomas (HNSCCs) are treated with surgery, radiation, chemotherapy, and limited targeted therapies. Compared to human papillomavirus (HPV)-positive HNSCCs, HPV-negative cases have worse treatment response and prognosis and represent an unmet clinical need. We performed comprehensive proteogenomic characterization of tumor specimens, matched normal adjacent tissues (NATs), and blood samples from 109 HPV-negative HNSCC patients. This cohort is dominated by tumors from oral cavity (45, 41%) and larynx (49, 45%). Somatic mutation and somatic copy number analyses validated previously reported genomic aberrations in HPV-negative HNSCC. Proteomics analysis linked p53 loss of heterozygosity to increased expression of EPCAM, a stemness marker. Additionally, FAT1 truncation mutations were associated with increased expression of proteins involved in keratinization, a key feature of SCC differentiation. Deletions of 3p and 9p led to the loss of genes encoding p16, chemokine receptors, and interferon/JAK/STAT signaling pathway proteins, whereas amplifications of 3q and 11q led to overexpression of proteins involved in cell proliferation and anti-apoptosis pathways. Comparative analysis of tumor and NAT proteomes and phosphoproteomes identified putative diagnostic biomarkers and druggable targets, and proteogenomic integration further identified putative neoantigens. Tumor site-specific characterization associated epigenetic silencing of neurofilaments with laryngeal but not oral cavity SCC. Protein targets of FDA approved or investigational drugs for HNSCC treatment showed high inter-tumor heterogeneity in their protein abundances. DNA copy number and RNA expression level were good surrogates of protein abundance for some targets, such as EGFR and PD-L1, but they failed to reflect protein levels or kinase activities for other targets, such as MMP9 and MTOR. Thus, there is a critical need for protein biomarker-driven treatment stratification. Deconvolution of bulk tumor gene expression data revealed an immune-hot subgroup and an immune-cold subgroup. Immune-hot tumors broadly overexpressed multiple immune checkpoints including PD-L1, IDO1, and CTLA4, underscoring the necessity of combination immune checkpoint inhibition to improve treatment efficacy. Immune-cold tumors were characterized by smoking, chromosomal instability, and activation of the CDK4/6-pRb axis, suggesting they could be targeted by CDK4/6 inhibitors. We also noted that EGFR-amplified tumors frequently harbor copy number aberrations of downstream signaling components of the EGFR pathway. This may explain the low response rate of EGFR-amplified tumors to EGFR inhibitors, and targeting multiple pathway components, including EGFR, PIK3CA and STAT3, may be required for these tumors. In summary, our integrative proteogenomic characterization revealed multiple novel insights into the pathogenesis and treatment of HPV-negative HNSCCs. Citation Format: Chen Huang, Lijun Chen, Yize Li, Sara Savage, Michael Schnaubelt, Felipe V. Leprevost, Marcin Cieslik, Yongchao Dou, Bo Wen, Jonathan T. Lei, Kai Li, Eric Jaehnig, Zhiao Shi, Meenakshi Anurag, Jianbo Pan, Yingwei Hu, Rodrigo V. Eguez, David J. Clark, Matthew Wyczalkowski, Saravana M. Dhanasekaran, Chandan Kumar, Antonio Colaprico, Karsten Krug, Michael Gillette, D. R. Mani, Seungyeul Yoo, Jiayi Ji, Xiaoyu Song, Weiping Ma, Xi Steven Chen, Alex Pico, Nathan J. Edwards, Scott D. Jewell, Mathangi Thiagarajan, Emily S. Boja, Henry Rodriguez, Andrew Sikora, Pei Wang, Matthew Ellis, Gilbert S. Omenn, Li Ding, Alexey I. Nesvizhskii, Adel K. EI-Naggar, Daniel W. Chan, Hui Zhang, Bing Zhang, Clinical Proteomic Tumor Analysis Consortium. Proteogenomics characterization of HPV-negative head and neck squamous cell carcinomas [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5118

    A proteogenomic portrait of lung squamous cell carcinoma

    No full text
    Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC
    corecore