26 research outputs found

    The challenges of diagnosing osteoporosis and the limitations of currently available tools

    Full text link
    Abstract Dual-energy X-ray absorptiometry (DXA) was the first imaging tool widely utilized by clinicians to assess fracture risk, especially in postmenopausal women. The development of DXA nearly coincided with the availability of effective osteoporosis medications. Although osteoporosis in adults is diagnosed based on a T-score equal to or below − 2.5 SD, most individuals who sustain fragility fractures are above this arbitrary cutoff. This incongruity poses a challenge to clinicians to identify patients who may benefit from osteoporosis treatments. DXA scanners generate 2 dimensional images of complex 3 dimensional structures, and report bone density as the quotient of the bone mineral content divided by the bone area. An obvious pitfall of this method is that a larger bone will convey superior strength, but may in fact have the same bone density as a smaller bone. Other imaging modalities are available such as peripheral quantitative CT, but are largely research tools. Current osteoporosis medications increase bone density and reduce fracture risk but the mechanisms of these actions vary. Anti-resorptive medications (bisphosphonates and denosumab) primarily increase endocortical bone by bolstering mineralization of endosteal resorption pits and thereby increase cortical thickness and reduce cortical porosity. Anabolic medications (teriparatide and abaloparatide) increase the periosteal and endosteal perimeters without large changes in cortical thickness resulting in a larger more structurally sound bone. Because of the differences in the mechanisms of the various drugs, there are likely benefits of selecting a treatment based on a patient’s unique bone structure and pattern of bone loss. This review retreats to basic principles in order to advance clinical management of fragility fractures by examining how skeletal biomechanics, size, shape, and ultra-structural properties are the ultimate predictors of bone strength. Accurate measurement of these skeletal parameters through the development of better imaging scanners is critical to advancing fracture risk assessment and informing clinicians on the best treatment strategy. With this information, a “treat to target” approach could be employed to tailor current and future therapies to each patient’s unique skeletal characteristics.https://deepblue.lib.umich.edu/bitstream/2027.42/143867/1/40842_2018_Article_62.pd

    A case report of T-box 1 mutation causing phenotypic features of chromosome 22q11.2 deletion syndrome

    Full text link
    Abstract Background The heterozygous microdeletion of chromosome 22q11.2 results in a spectrum of disorders, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS), with phenotypic features that can include the classic triad of congenital heart disease (CHD), thymic aplasia and hypoparathyroidism. Such microdeletions are usually detectable by fluorescence in situ hybridization (FISH). Case presentation We report a case of a twenty-three year-old female who presented with clinical features of chromosome 22q11.2 deletion syndrome including cardiac anomalies, hypoparathyroidism and dysmorphic facial features. FISH did not reveal a 22q11.2 microdeletion. Further genetic analysis showed T box-1 (TBX1) heterozygous mutation. Conclusions The TBX1 gene plays a significant role in the development of fourth pharyngeal arch structures. Mutations of TBX1, which is found at chromosome 22q11.21 can be responsible for the development of syndromes classically associated with chromosome 22q11.2 deletions. This case emphasizes that the TBX1 gene, among other genes, can be responsible for the developmental anomalies seen in these syndromes.https://deepblue.lib.umich.edu/bitstream/2027.42/152180/1/40842_2019_Article_87.pd

    DKK1 and Kremen Expression Predicts the Osteoblastic Response to Bone Metastasis

    No full text
    Bone metastasis is a complication of advanced breast and prostate cancer. Tumor-secreted Dickkopf homolog 1 (DKK1), an inhibitor of canonical Wnt signaling and osteoblast differentiation, was proposed to regulate the osteoblastic response to metastatic cancer in bone. The objectives of this study were to compare DKK1 expression with the in vivo osteoblastic response in a panel of breast and prostate cancer cell lines, and to discover mechanisms that regulate cancer DKK1 expression. DKK1 expression was highest in MDA-MB-231 and PC3 cells that produce osteolytic lesions, and hence a suppressed osteoblastic response, in animal models of bone metastasis. LnCaP, C4-2B, LuCaP23.1, T47D, ZR-75-1, MCF-7, ARCaP and ARCaPM cancer cells that generate osteoblastic, mixed or no bone lesions had the lowest DKK1 expression. The cell lines with negligible expression, LnCaP, C4-2B and T47D, exhibited methylation of the DKK1 promoter. Canonical Wnt signaling activity was then determined and found in all cell lines tested, even in the MDA-MB-231 and PC3 cell lines despite sizeable amounts of DKK1 protein expression expected to block canonical Wnt signaling. A mechanism of DKK1 resistance in the osteolytic cell lines was investigated and determined to be at least partially due to down-regulation of the DKK1 receptors Kremen1 and Kremen2 in the MDA-MB-231 and PC3 cell lines. Combined DKK1 and Kremen expression in cancer cells may serve as predictive markers of the osteoblastic response of breast and prostate cancer bone metastasis

    Adrenal metastasis as the initial diagnosis of synchronous papillary and follicular thyroid cancer

    Full text link
    Abstract Background Differentiated thyroid cancer uncommonly presents with distant metastases. Adrenal metastasis from differentiated thyroid cancer presenting as the initial finding is even less common. Case Presentation A 71-year-old male was incidentally found on chest CT to have bilateral thyroid nodules, which were confirmed on ultrasound. Fine needle aspiration of the dominant right 3.3 cm nodule contained histologic features most consistent with Bethesda classification III, and repeat fine needle aspiration revealed pathology consistent with Bethesda classification II. Follow-up thyroid ultrasound showed 1% increase and 14% increase in nodule volume at one and two years, respectively, compared to baseline. Prior to the second annual thyroid ultrasound, the patient was incidentally found to have a 4.1 cm heterogeneously enhancing mass in the right adrenal gland on CT of the abdomen and pelvis. Biochemical evaluation was unremarkable with the exception of morning cortisol of 3.2 µg/dL after dexamethasone suppression. The patient then underwent laparoscopic right adrenal gland excision, which revealed metastatic follicular thyroid carcinoma. Total thyroidectomy was then performed, with pathology showing a 4.8 cm well-differentiated follicular thyroid carcinoma of the right lobe, a 0.5 cm noninvasive follicular thyroid neoplasm with papillary-like nuclear features of the left lobe, and a 0.1 cm papillary microcarcinoma of the left lobe. Thyrotropin-stimulated whole body scan showed normal physiologic uptake of the remnant thyroid tissue without evidence of other iodine avid disease. The patient then received radioactive iodine. At follow-up 14 months after total thyroidectomy, he remains free of recurrent disease. Conclusion Despite following the recommended protocol for evaluation and surveillance of thyroid nodules, thyroid cancer can be challenging to diagnose, and may not be diagnosed until distant metastases are identified.http://deepblue.lib.umich.edu/bitstream/2027.42/174030/1/40842_2020_Article_109.pd

    Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    Get PDF
    Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF). CF-related bone disease (CFBD) is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR), the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/-) mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+) littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl) mRNA was detected, significantly less osteoprotegerin (Opg) was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt signaling was defective in Cftr-/- murine calvarial osteoblasts. These results support that genetic inactivation of CFTR in osteoblasts contributes to low bone mass and that targeting osteoblasts may represent an effective strategy to treat CFBD

    Osteoblasts Generate Testosterone From DHEA and Activate Androgen Signaling in Prostate Cancer Cells

    Full text link
    Bone metastasis is a complication of prostate cancer in up to 90% of men afflicted with advanced disease. Therapies that reduce androgen exposure remain at the forefront of treatment. However, most prostate cancers transition to a state whereby reducing testicular androgen action becomes ineffective. A common mechanism of this transition is intratumoral production of testosterone (T) using the adrenal androgen precursor dehydroepiandrosterone (DHEA) through enzymatic conversion by 3β- and 17β- hydroxysteroid dehydrogenases (3βHSD and 17βHSD). Given the ability of prostate cancer to form blastic metastases in bone, we hypothesized that osteoblasts might be a source of androgen synthesis. RNA expression analyses of murine osteoblasts and human bone confirmed that at least one 3βHSD and 17βHSD enzyme isoform was expressed, suggesting that osteoblasts are capable of generating androgens from adrenal DHEA. Murine osteoblasts were treated with 100- nM and 1- μM DHEA or vehicle control. Conditioned media from these osteoblasts were assayed for intermediate and active androgens by liquid chromatography- tandem mass spectrometry. As DHEA was consumed, the androgen intermediates androstenediol and androstenedione were generated and subsequently converted to T. Conditioned media of DHEA- treated osteoblasts increased androgen receptor (AR) signaling, prostate- specific antigen (PSA) production, and cell numbers of the androgen- sensitive prostate cancer cell lines C4- 2B and LNCaP. DHEA did not induce AR signaling in osteoblasts despite AR expression in this cell type. We describe an unreported function of osteoblasts as a source of T that is especially relevant during androgen- responsive metastatic prostate cancer invasion into bone. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/1/jbmr4313_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/2/jbmr4313.pd

    A rare cause of atraumatic fractures: case series of four patients with tumor-induced osteomalacia

    Full text link
    Abstract Background Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome that presents with hypophosphatemia, bone pain, muscle weakness and fractures. We report a case series of four patients with TIO that resulted in significant muscle weakness and multiple atraumatic fractures. Case presentation Four patients were referred to an endocrinology clinic for the evaluation of multiple atraumatic fractures, muscle weakness, generalized muscle and joint pain. Laboratory evaluation was notable for persistent hypophosphatemia due to urinary phosphate wasting, low to low-normal 1,25-dihydroxyvitamin D, elevated alkaline phosphatase and elevated fibroblast growth factor 23 (FGF23). Tumor localization was successful, and all four patients underwent resection of phosphaturic mesenchymal tumors. Post-operatively, patients exhibited normalization of serum phosphorus, in addition to significant improvement in their ambulatory function. Conclusion Hypophosphatemia with elevated FGF23 and low 1,25-dihydroxyvitamin D level in the setting of multiple atraumatic fractures necessitates careful evaluation for biochemical evidence of tumor-induced osteomalacia.http://deepblue.lib.umich.edu/bitstream/2027.42/174028/1/40842_2020_Article_101.pd

    Osteoblasts Generate Testosterone From DHEA

    No full text
    Bone metastasis is a complication of prostate cancer in up to 90% of men afflicted with advanced disease. Therapies that reduce androgen exposure remain at the forefront of treatment. However, most prostate cancers transition to a state whereby reducing testicular androgen action becomes ineffective. A common mechanism of this transition is intratumoral production of testosterone (T) using the adrenal androgen precursor dehydroepiandrosterone (DHEA) through enzymatic conversion by 3β- and 17β- hydroxysteroid dehydrogenases (3βHSD and 17βHSD). Given the ability of prostate cancer to form blastic metastases in bone, we hypothesized that osteoblasts might be a source of androgen synthesis. RNA expression analyses of murine osteoblasts and human bone confirmed that at least one 3βHSD and 17βHSD enzyme isoform was expressed, suggesting that osteoblasts are capable of generating androgens from adrenal DHEA. Murine osteoblasts were treated with 100- nM and 1- μM DHEA or vehicle control. Conditioned media from these osteoblasts were assayed for intermediate and active androgens by liquid chromatography- tandem mass spectrometry. As DHEA was consumed, the androgen intermediates androstenediol and androstenedione were generated and subsequently converted to T. Conditioned media of DHEA- treated osteoblasts increased androgen receptor (AR) signaling, prostate- specific antigen (PSA) production, and cell numbers of the androgen- sensitive prostate cancer cell lines C4- 2B and LNCaP. DHEA did not induce AR signaling in osteoblasts despite AR expression in this cell type. We describe an unreported function of osteoblasts as a source of T that is especially relevant during androgen- responsive metastatic prostate cancer invasion into bone. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/1/jbmr4313_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/2/jbmr4313.pd

    Clinical bone health among adults with cerebral palsy: moving beyond assessing bone mineral density alone

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/171995/1/dmcn15093.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/171995/2/dmcn15093_am.pd
    corecore