5,558 research outputs found

    CF6 High Pressure Compressor and Turbine Clearance Evaluations

    Get PDF
    In the CF6 Jet Engine Diagnostics Program the causes of performance degradation were determined for each component of revenue service engines. It was found that a significant contribution to performance degradation was caused by increased airfoil tip radial clearances in the high pressure compressor and turbine areas. Since the influence of these clearances on engine performance and fuel consumption is significant, it is important to accurately establish these relatonships. It is equally important to understand the causes of clearance deterioration so that they can be reduced or eliminated. The results of factory engine tests run to enhance the understanding of the high pressure compressor and turbine clearance effects on performance are described. The causes of clearance deterioration are indicated and potential improvements in clearance control are discussed

    Observations of cosmic gamma-ray bursts with IMP-7: Evidence for a single spectrum

    Get PDF
    Spectral observation of nine recent cosmic gamma-ray bursts are reported. The average photon number spectra of all nine events are shown to be consistent with a 150-keV exponential from 100 keV to about 400 keV, and a power law of index -2.5 from 400 keV to 1100 keV. The observations also indicate an event rate of 16 in 1972 and 1973, or 8 + or - 2 per year, higher than the 5 + or - 1 per year initially reported. This corresponds to an approximately 40-percent lower effective intensity threshold, attained by using more sensitive detectors in multiple-satellite coincidence

    Resolution of Nearly Mass Degenerate Higgs Bosons and Production of Black Hole Systems of Known Mass at a Muon Collider

    Full text link
    The direct s-channel coupling to Higgs bosons is 40000 times greater for muons than electrons; the coupling goes as mass squared. High precision scanning of the lighter h0h^0 and the higher mass H0H^0 and A0A^0 is thus possible with a muon collider. The H0H^0 and A0A^0 are expected to be nearly mass degenerate and to be CP even and odd, respectively. A muon collider could resolve the mass degeneracy and make CP measurements. The origin of CP violation in the K0K^{0} and B0B^{0} meson systems might lie in the the H0/A0H^0/A^0 Higgs bosons. If large extra dimensions exist, black holes with lifetimes of 1026\sim 10^{-26} seconds could be created and observed via Hawking radiation at the LHC. Unlike proton or electron colliders, muon colliders can produce black hole systems of known mass. This opens the possibilities of measuring quantum remnants, gravitons as missing energy, and scanning production turn on. Proton colliders are hampered by parton distributions and CLIC by beamstrahlung. The ILC lacks the energy reach.Comment: Latex, 5 pages, 2 figures, proceedings to the DPF 2004: Annual Meeting of the Division of Particles and Fields of APS, 26 August-31 August 2004, Riverside, CA, US

    The Goddard program of gamma ray transient astronomy

    Get PDF
    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5

    Spontaneous Symmetry Breaking in General Relativity. Vector Order Parameter

    Full text link
    Gravitational properties of a hedge-hog type topological defect in two extra dimensions are considered in General Relativity employing a vector as the order parameter. All previous considerations were done using the order parameter in the form of a multiplet in a target space of scalar fields. The difference of these two approaches is analyzed and demonstrated in detail. Regular solutions of the Einstein equations are studied analytically and numerically. It is shown that the existence of a negative cosmological constant is sufficient for the spontaneous symmetry breaking of the initially plain bulk. Regular configurations have a growing gravitational potential and are able to trap the matter on the brane. If the energy of spontaneous symmetry breaking is high, the gravitational potential has several points of minimum. Identical in the uniform bulk spin-less particles, being trapped within separate minima, acquire different masses and appear to the observer on brane as different particles with integer spins.Comment: 23 pages, 6 figure

    Millicharged Atomic Dark Matter

    Full text link
    We present a simplified version of the atomic dark matter scenario, in which charged dark constituents are bound into atoms analogous to hydrogen by a massless hidden sector U(1) gauge interaction. Previous studies have assumed that interactions between the dark sector and the standard model are mediated by a second, massive Z' gauge boson, but here we consider the case where only a massless gamma' kinetically mixes with the standard model hypercharge and thereby mediates direct detection. This is therefore the simplest atomic dark matter model that has direct interactions with the standard model, arising from the small electric charge for the dark constituents induced by the kinetic mixing. We map out the parameter space that is consistent with cosmological constraints and direct searches, assuming that some unspecified mechanism creates the asymmetry that gives the right abundance, since the dark matter cannot be a thermal relic in this scenario. In the special case where the dark "electron" and "proton" are degenerate in mass, inelastic hyperfine transitions can explain the CoGeNT excess events. In the more general case, elastic transitions dominate, and can be close to current direct detection limits over a wide range of masses.Comment: 5 pages, 2 figures; v2: added references, and formula for dark ionization fraction; published versio

    The protein import apparatus of chloroplasts

    Get PDF
    Routing of cytosolically synthesized precursor proteins into chloroplasts is a specific process which involves a multitude of soluble and membrane components. In this review we wil1 focus on early events of the translocation pathway of nuclear coded plastidic precursor proteins and compare import routes for polypeptide of the outer chloroplast envelope to that of internal chloroplast compartments. A number of proteins housed in the chloroplast envelopes have been implied to be involved in the translocation process, but so far a certain function has not been assigned to any of these proteins. The only exception could be an envelope localized hsc 70 homologue which could retain the import competence of a precursor protein in transit into the organelle

    On the origin of the March 5, 1979 gamma ray transient: A vibrating neutron star in the Large Magellanic Cloud

    Get PDF
    It is proposed that a vibrating neutron star in the Large Magellanic Cloud is the source of the March 5 transient. Neutron star vibrations transport energy rapidly to the surface, heat the atmosphere by wave dissipation, and decay by gravitational radiation reaction. The electromagnetic emission arises from e(+)-e(-) pairs which cool and annihilate in the strong magnetic field of the neutron star. The field also confines the pairs, and this allows the production of the redshifted annihilation feature observed in the data. The redshift implies a gravitational radiation damping time which agrees with the 0.15 second duration of the impulsive phase of the event. Thus, the March 5 transient may be both the first detection of a vibrating neutron star and indirect evidence for gravitational radiation
    corecore