293 research outputs found
Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas
Selective laser melting (SLM) is an additive manufacturing technique in which metal products are manufactured in a layer-by-layer manner. One of the main advantages of SLM is the large geometrical design freedom. Because of the layered build, parts with inner cavities can be produced. However, complex structures, such as downfacing areas, influence the process behavior significantly. The downfacing areas can be either horizontal or inclined structures. The first part of this work describes the process parameter optimization for noncomplex, upfacing structures to obtain relative densities above 99%. In the second part of this research, parameters are optimized for downfacing areas, both horizontal and inclined. The experimental results are compared to simulations of a thermal model, which calculates the melt pool dimensions based on the material properties (such as thermal conductivity) and process parameters (such as laser power and scan speed). The simulations show a great similarity between the thermal model and the actual process
Indulgent thinking?:Ecological momentary assessment of overweight and healthy-weight participants' cognitions and emotions
Cognitions and emotions are considered important determinants of eating behaviour in cognitive behavioural models of obesity. Ecological data on these determinants is still limited. The present study investigated cognitions and emotions of overweight (n = 57) and healthy-weight (n = 43) participants via Ecological Momentary Assessment. It was found that eating-related cognitions mainly focused on desire and taste. Unexpectedly, dysfunctional cognitions (i.e., thoughts that may promote overeating) did not occur more often for overweight participants in almost all cases. So, the present EMA study provides no evidence for a role of dysfunctional cognitions in obesity-promoting eating behaviour when assessing eating-related cognitions immediately prior to eating events using a free-text format assessment. Right before eating events, participants mostly reported feeling calm/relaxed and cheerful/happy. Overweight participants scored higher on negative emotions, both at eating events and non-eating moments, than did healthy-weight participants. In addition, scores on standard questionnaires assessing emotional eating were positively associated with negative emotions reported at both eating and non-eating moments. As such, negative emotions, as assessed in the present study, do not seem to be specific triggers for food consumption
Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that controls cell cycle transitions. Its regulation by the spindle assembly checkpoint (SAC) is coordinated with the attachment of sister chromatids to the mitotic spindle. APC/C SUMOylation on APC4 ensures timely anaphase onset and chromosome segregation. To understand the structural and functional consequences of APC/C SUMOylation, we reconstituted SUMOylated APC/C for electron cryo-microscopy and biochemical analyses. SUMOylation of the APC/C causes a substantial rearrangement of the WHB domain of APC/C's cullin subunit (APC2(WHB)). Although APC/C-Cdc20 SUMOylation results in a modest impact on normal APC/C-Cdc20 activity, repositioning APC2(WHB) reduces the affinity of APC/C-Cdc20 for the mitotic checkpoint complex (MCC), the effector of the SAC. This attenuates MCC-mediated suppression of APC/C-Cdc20 activity, allowing for more efficient ubiquitination of APC/C-Cdc20 substrates in the presence of the MCC. Thus, SUMOylation stimulates the reactivation of APC/C-Cdc20 when the SAC is silenced, contributing to timely anaphase onset.Cancer Signaling networks and Molecular Therapeutic
Copper effect on the protein composition of photosystem II
The definitive version is available at:
http://www.blackwell-synergy.com/doi/full/10.1111/j.1399-3054.2000.1100419.xWe provide data from in vitro experiments on the polypeptide composition, photosynthetic electron transport and oxygen evolution activity of intact photosystem II (PSII) preparations under Cu(II) toxicity conditions. Low Cu(II) concentrations (Cu(II) per PSII reaction centre unitβ€230) that caused around 50% inhibition of variable chlorophyll a fluorescence and oxygen evolution activity did not affect the polypeptide composition of PSII. However, the extrinsic proteins of 33, 24 and 17 kDa of the oxygen-evolving complex of PSII were removed when samples were treated with 300 ΞΌM CuCl2 (Cu(II) per PSII reaction centre unit=1 400). The LHCII antenna complex and D1 protein of the reaction centre of PSII were not affected even at these Cu(II) concentrations. The results indicated that the initial inhibition of the PSII electron transport and oxygen-evolving activity induced by the presence of toxic Cu(II) concentrations occurred before the damage of the oxygen-evolving complex. Indeed, more than 50% inhibition could be achieved in conditions where its protein composition and integrity was apparently preserved.This work was supported by the DirecciΓ³n General de InvestigaciΓ³n CientΓfica y TΓ©cnica (Grant PB98-1632).Peer reviewe
PCNA dependent cellular activities tolerate dramatic perturbations in PCNA client interactions
Proliferating cell nuclear antigen (PCNA) is an essential cofactor for DNA replication and repair, recruiting multiple proteins to their sites of action. We examined the effects of the PCNA(S228I) mutation that causes PCNA-associated DNA repair disorder (PARD). Cells from individuals affected by PARD are sensitive to the PCNA inhibitors T3 and T2AA, showing that the S228I mutation has consequences for undamaged cells. Analysis of the binding between PCNA and PCNA-interacting proteins (PIPs) shows that the S228I change dramatically impairs the majority of these interactions, including that of Cdt1, DNMT1, PolD3(p66) and PolD4(p12). In contrast p21 largely retains the ability to bind PCNA(S228I). This property is conferred by the p21 PIP box sequence itself, which is both necessary and sufficient for PCNA(S228I) binding. Ubiquitination of PCNA is unaffected by the S228I change, which indirectly alters the structure of the inter-domain connecting loop. Despite the dramatic in vitro effects of the PARD mutation on PIP-degron binding, there are only minor alterations to the stability of p21 and Cdt1 in cells from affected individuals. Overall our data suggests that reduced affinity of PCNA(S228I) for specific clients causes subtle cellular defects in undamaged cells which likely contribute to the etiology of PARD
Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: Fine mapping and escape mutant analysis
Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations
DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains
List of genes down-regulated in both W6nk2 and Zhenong8 after 15ΓΒ days exposure to 5ΓΒ ΓΕΊM Cd. (DOC 130 kb
Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
Lack of assurance of quality with additively manufactured (AM) parts is a key technological barrier that prevents manufacturers from adopting AM technologies, especially for high-value applications where component failure cannot be tolerated. Developments in process control have allowed significant enhancement of AM techniques and marked improvements in surface roughness and material properties, along with a reduction in inter-build variation and the occurrence of embedded material discontinuities. As a result, the exploitation of AM processes continues to accelerate. Unlike established subtractive processes, where in-process monitoring is now commonplace, factory-ready AM processes have not yet incorporated monitoring technologies that allow discontinuities to be detected in process. Researchers have investigated new forms of instrumentation and adaptive approaches which, when integrated, will allow further enhancement to the assurance that can be offered when producing AM components. The state-of-the-art with respect to inspection methodologies compatible with AM processes is explored here. Their suitability for the inspection and identification of typical material discontinuities and failure modes is discussed with the intention of identifying new avenues for research and proposing approaches to integration into future generations of AM systems
Polo-Like Kinase-1 Controls Aurora A Destruction by Activating APC/C-Cdh1
Polo-like kinase-1 (Plk1) is activated before mitosis by Aurora A and its cofactor Bora. In mitosis, Bora is degraded in a manner dependent on Plk1 kinase activity and the E3 ubiquitin ligase SCF-Ξ²TrCP. Here, we show that Plk1 is also required for the timely destruction of its activator Aurora A in late anaphase. It has been shown that Aurora A destruction is controlled by the auxiliary subunit Cdh1 of the Anaphase-Promoting Complex/Cyclosome (APC/C). Remarkably, we found that Plk1-depletion prevented the efficient dephosphorylation of Cdh1 during mitotic exit. Plk1 mediated its effect on Cdh1, at least in part, through direct phosphorylation of the human phosphatase Cdc14A, controlling the phosphorylation state of Cdh1. We conclude that Plk1 facilitates efficient Aurora A degradation through APC/C-Cdh1 activation after mitosis, with a potential role for hCdc14A
Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis
Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein
- β¦