129 research outputs found

    Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape

    Get PDF
    We consider the cosmological dynamics associated with volume weighted measures of eternal inflation, in the Bousso-Polchinski model of the string theory landscape. We find that this measure predicts that observers are most likely to find themselves in low energy vacua with one flux considerably larger than the rest. Furthermore, it allows for a satisfactory anthropic explanation of the cosmological constant problem by producing a smooth, and approximately constant, distribution of potentially observable values of Lambda. The low energy vacua selected by this measure are often short lived. If we require anthropically acceptable vacua to have a minimum life-time of 10 billion years, then for reasonable parameters a typical observer should expect their vacuum to have a life-time of approximately 12 billion years. This prediction is model dependent, but may point toward a solution to the coincidence problem of cosmology.Comment: 35 pages, 8 figure

    Observable Effects of Scalar Fields and Varying Constants

    Get PDF
    We show by using the method of matched asymptotic expansions that a sufficient condition can be derived which determines when a local experiment will detect the cosmological variation of a scalar field which is driving the spacetime variation of a supposed constant of Nature. We extend our earlier analyses of this problem by including the possibility that the local region is undergoing collapse inside a virialised structure, like a galaxy or galaxy cluster. We show by direct calculation that the sufficient condition is met to high precision in our own local region and we can therefore legitimately use local observations to place constraints upon the variation of "constants" of Nature on cosmological scales.Comment: Invited Festscrift Articl

    Oscillatory behavior of closed isotropic models in second order gravity theory

    Full text link
    Homogeneous and isotropic models are studied in the Jordan frame of the second order gravity theory. The late time evolution of the models is analysed with the methods of the dynamical systems. The normal form of the dynamical system has periodic solutions for a large set of initial conditions. This implies that an initially expanding closed isotropic universe may exhibit oscillatory behaviour.Comment: 16 pages, 3 figures. With some minor improvements. To appear in General Relativity and Gravitatio

    Revised spherically symmetric solutions of R+ε/RR+\varepsilon/R gravity

    Full text link
    We study spherically symmetric static empty space solutions in R+ε/RR+\varepsilon/R model of f(R)f(R) gravity. We show that the Schwarzschild metric is an exact solution of the resulted field equations and consequently there are general solutions which {are perturbed Schwarzschild metric and viable for solar system. Our results for large scale contains a logarithmic term with a coefficient producing a repulsive gravity force which is in agreement with the positive acceleration of the universe.Comment: 8 page

    Crossing of the w=-1 Barrier in Two-Fluid Viscous Modified Gravity

    Full text link
    Singularities in the dark energy late universe are discussed, under the assumption that the Lagrangian contains the Einstein term R plus a modified gravity term of the form R^\alpha, where \alpha is a constant. It is found, similarly as in the case of pure Einstein gravity [I. Brevik and O. Gorbunova, Gen. Rel. Grav. 37 (2005), 2039], that the fluid can pass from the quintessence region (w>-1) into the phantom region (w<-1) as a consequence of a bulk viscosity varying with time. It becomes necessary now, however, to allow for a two-fluid model, since the viscosities for the two components vary differently with time. No scalar fields are needed for the description of the passage through the phantom barrier.Comment: 16 pages latex, no figure

    Bianchi VIIAVII_A solutions of quadratic gravity

    Full text link
    It is believed that soon after the Planck time, Einstein's general relativity theory should be corrected to an effective quadratic theory. Numerical solutions for the anisotropic generalization of the Friedmann "open" model H3H^ 3 for this effective gravity are given. It must be emphasized that although numeric, these solutions are exact in the sense that they depend only on the precision of the machine. The solutions are identified asymptotically in a certain way. It is found solutions which asymptote de Sitter space, Riemann flat space and a singularity. The question of isotropisation of an initially anisotropic Universe is of great importance in the context of cosmology. Although isotropisation is not directly discussed in this present work, we show that sufficiently small anisotropies, do not increase indefinitely according to particular quadratic gravity theories. It can be understood as weak isotropisation, and we stress that this result is strongly dependent on initial conditions.Comment: version accepted for publication in General Relativity and Gravitation. arXiv admin note: substantial text overlap with arXiv:1203.688

    Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure

    Get PDF
    BACKGROUND AND AIMS: Flow-mediated dilatation of the brachial artery (FMD) is a biomarker of endothelial function and cardiovascular health. Impaired FMD is associated with several cardiovascular risk factors including hypertension and obesity. Various food ingredients such as polyphenols have been shown to improve FMD. We investigated whether consuming resveratrol, a polyphenol found in red wine, can enhance FMD acutely and whether there is a dose-response relationship for this effect.  METHODS AND RESULTS: 19 overweight/obese (BMI 25-35 kg m(-2)) men or post-menopausal women with untreated borderline hypertension (systolic BP: 130-160 mmHg or diastolic BP: 85-100 mmHg) consumed three doses of resveratrol (resVida™ 30, 90 and 270 mg) and a placebo at weekly intervals in a double-blind, randomized crossover comparison. One hour after consumption of the supplement, plasma resveratrol and FMD were measured. Data were analyzed by linear regression versus log(10) dose of resveratrol. 14 men and 5 women (age 55 ± 2 years, BMI 28.7 ± 0.5 kg m(-2), BP 141 ± 2/89 ± 1 mmHg) completed this study. There was a significant dose effect of resveratrol on plasma resveratrol concentration (P < 0.001) and on FMD (P < 0.01), which increased from 4.1 ± 0.8% (placebo) to 7.7 ± 1.5% after 270 mg resveratrol. FMD was also linearly related to log(10) plasma resveratrol concentration (P < 0.01).  CONCLUSION: Acute resveratrol consumption increased plasma resveratrol concentrations and FMD in a dose-related manner. This effect may contribute to the purported cardiovascular health benefits of grapes and red wine

    Complete solutions to the metric of spherically collapsing dust in an expanding spacetime with a cosmological constant

    Get PDF
    We present semi-analytical solutions to the background equations describing the Lema\^itre-Tolman-Bondi (LTB) metric as well as the homogeneous Friedmann equations, in the presence of dust, curvature and a cosmological constant Lambda. For none of the presented solutions any numerical integration has to be performed. All presented solutions are given for expanding and collapsing phases, preserving continuity in time and radius. Hence, these solutions describe the complete space time of a collapsing spherical object in an expanding universe. In the appendix we present for completeness a solution of the Friedmann equations in the additional presence of radiation, only valid for the Robertson-Walker metric.Comment: 23 pages, one figure. Numerical module for evaluation of the solutions released at http://web.physik.rwth-aachen.de/download/valkenburg/ColLambda/ Matches published version, published under Open Access. Note change of titl

    On Higher Order Gravities, Their Analogy to GR, and Dimensional Dependent Version of Duff's Trace Anomaly Relation

    Full text link
    An almost brief, though lengthy, review introduction about the long history of higher order gravities and their applications, as employed in the literature, is provided. We review the analogous procedure between higher order gravities and GR, as described in our previous works, in order to highlight its important achievements. Amongst which are presentation of an easy classification of higher order Lagrangians and its employment as a \emph{criteria} in order to distinguish correct metric theories of gravity. For example, it does not permit the inclusion of only one of the second order Lagrangians in \emph{isolation}. But, it does allow the inclusion of the cosmological term. We also discuss on the compatibility of our procedure and the Mach idea. We derive a dimensional dependent version of Duff's trace anomaly relation, which in \emph{four}-dimension is the same as the usual Duff relation. The Lanczos Lagrangian satisfies this new constraint in \emph{any} dimension. The square of the Weyl tensor identically satisfies it independent of dimension, however, this Lagrangian satisfies the previous relation only in three and four dimensions.Comment: 30 pages, added reference

    Probing the dark matter issue in f(R)-gravity via gravitational lensing

    Full text link
    For a general class of analytic f(R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f(R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.Comment: 7 pages, accepted for publication in EPJ
    • …
    corecore