4 research outputs found

    New developments and applications in quantitative electron spectroscopic imaging of iron in human liver biopsies

    Get PDF
    Reliable iron concentration data can be obtained by quantitative analyses of image sequences, acquired by electron spectroscopic imaging. A number of requirements are formulated for the successful application of this recently developed in situ quantitative type of analysis. A demonstration of the procedures is given. By application of the technique it is established that there are no significant differences in the average iron loading of structures analysed in liver parenchymal cells of a patient with an iron storage disease, before and after phlebotomy. This supports the hypothesis that the process of iron unloading is an organelle specific process. Measurement of the binary morphology, represented by the area and contour ratio of the iron containing objects revealed no information about differences between the objects. This finding contradicts the visual suggestion that ferritin clusters are more irregularly shaped than the other iron objects. Also, no differences could be found in this sense between the situations before and after phlebotomy. With respect to the density appearance, objects that have an inhomogeneous iron loading averagely contain more iron. This observation does correspond well with the visual impression of the increasingly irregular appearance of more well-loaded structures

    Ferritin accumulation and uroporphyrin crystal formation in hepatocytes of C57BL/10 mice: A time-course study

    Get PDF
    To establish the time-sequence relationship between ferritin accumulation and uroporphyrin crystal formation in livers of C57BL/10 mice, a biochemical, morphological and morphometrical study was performed. Uroporphyria was induced by the intraperitoneal administration of hexachlorobenzene plus iron dextran and of iron dextran alone. Uroporphyrin crystal formation started in hepatocytes of mice treated with hexachlorobenzene plus iron dextran at 2 weeks and in mice treated with iron dextran alone at 9 weeks. In the course of time, uroporphyrin crystals gradually increased in size. Uroporphyrin crystals were initially formed in hepatocytes in the periportal areas of the liver, in which also ferric iron staining was first detected. The amount and the distribution of the main storage form of iron in hepatocytes, ferritin, did not differ between the two treatment groups. Ferritin accumulation preceded the formation of uroporphyrin crystals in hepatocytes in both treatment groups. Moreover, uroporphyrin crystals were nearly always found close to ferritin iron. We conclude that uroporphyrin crystals are only formed in hepatocytes in which also iron (ferritin) accumulates. Hexachlorobenzene accelerates the effects of iron in porphyrin metabolism, but does not influence the accumulation of iron into the liver

    Isolation and partial characterization of two porcine spleen ferritin fractions with different electrophoretic mobility

    Get PDF
    Ferritin isolated from porcine spleen could routinely be separated in two fractions on nondenaturating gradient gels. Both fractions could be isolated with a purity of 96% when applied to two serially linked columns, each 200 cm in length, packed respectively with Sepharose 4B and Sepharose 6B. Both fractions were similar as judged by electron microscopy. Assessed biochemically fractions were equal with respect to subunit composition, iron and phosphorus content, as well as amino acid composition (with the exception of N-acetylglucosamine). Carbohydrate analysis showed that the fraction with an apparent mass of 440 kDa (=FFL) contained 1.8% (w/w) glycans, whereas the fraction with an apparent mass of 670 kDa (=FFH) contained nearly five times as much (neutral) sugar residues (8.9%, w/w) and 10 times as much sialic acid. This difference in amount of carbohydrate side chains might explain the dissimilarity in electrophoretic mobility of the two fractions
    corecore