3 research outputs found

    Hanging out at the club: Breeding status and territoriality affect individual space use, multi‐species overlap and pathogen transmission risk at a seabird colony

    Get PDF
    1. Wildlife movement ecology often focuses on breeders, whose territorial attachments facilitate trapping and following individuals over time. This leads to incomplete understanding of movements of individuals not actively breeding due to age, breeding failure, subordinance, and other factors. These individuals are often present in breeding populations and contribute to processes such as competition and pathogen spread. Therefore, excluding them from movement ecology studies could bias or mask important spatial dynamics. 2. Loafing areas offer an alternative to breeding sites for capturing and tracking individuals. Such sites may allow for sampling individuals regardless of breeding status, while also avoiding disturbance of sensitive breeding areas. However, little is known about the breeding status of individuals attending loafing sites, or how their movements compare to those of breeders captured at nests. 3. We captured a seabird, the brown skua, attending either nests or loafing areas (‘clubs’) at a multi-species seabird breeding site on Amsterdam Island (southern Indian Ocean). We outfitted skuas with GPS-UHF transmitters and inferred breeding statuses of individuals captured at clubs using movement patterns of breeders captured at nests. We then compared space use and activity patterns between breeders and nonbreeders. 4. Both breeding and nonbreeding skuas attended clubs. Nonbreeders ranged more widely, were more active, and overlapped more with other seabirds and marine mammals than did breeders. Moreover, some nonbreeders occupied fixed territories and displayed more restricted movements than those without territories. Nonbreeders became less active over the breeding season, while activity of breeders remained stable. Nonbreeding skuas were exposed to the agent of avian cholera at similar rates to breeders but were more likely to forage in breeding areas of the endangered endemic Amsterdam albatross, increasing opportunities for interspecific pathogen transmission. 5. Our results show that inference based only on breeders fails to capture important aspects of population-wide movement patterns. Capturing nonbreeders as well as breeders would help to improve population-level representation of movement patterns, elucidate and predict effects of external changes and conservation interventions (e.g. rat eradication) on movement patterns and pathogen spread, and develop strategies to manage outbreaks of diseases such as highly pathogenic avian influenza

    Genomic characterisation of a novel species of Erysipelothrix (E. amsterdamensis) associated with mortalities among endangered seabirds

    Get PDF
    Infectious diseases threaten endangered species, particularly in small isolated populations. Seabird populations on the remote Amsterdam Island in the Indian Ocean have been in decline for the past three decades, with avian cholera caused by Pasteurella multocida proposed as the primary driver. However, Erysipelothrix species have also been sporadically detected from albatrosses on Amsterdam Island and may be contributing to some of the observed mortality. In this study, we genomically characterized 16 Erysipelothrix species isolates obtained from three Indian yellow-nosed albatross (Thalassarche carteri) chick carcasses in 2019. Histological analyses suggest that they died of bacterial septicaemia. Two isolates were sequenced using both Illumina short-read and MinION long-read approaches, which – following hybrid assembly – resulted in closed circular genomes. Mapping of Illumina reads from the remaining isolates to one of these new reference genomes revealed that all 16 isolates were closely related, with a maximum of 13 nucleotide differences distinguishing any pair of isolates. The nucleotide diversity of isolates obtained from the same or different carcasses was similar, suggesting all three chicks were likely infected from a common source. These genomes were compared with a global collection of genomes from Erysipelothrix rhusiopathiae and other species from the same genus. The isolates from albatrosses were phylogenetically distinct, sharing a most recent common ancestor with E. rhusiopathiae. Based on phylogenomic analysis and standard thresholds for average nucleotide identity and digital DNA–DNA hybridization, these isolates represent a novel Erysipelothrix species, for which we propose the name Erysipelothrix amsterdamensis sp. nov. The type strain is A18Y020dT (=CIP 112216T=DSM 115297T). The implications of this bacterium for albatross conservation will require further study
    corecore