67 research outputs found

    CLEAR II: Evidence for Early Formation of the Most Compact Quiescent Galaxies at High Redshift

    Full text link
    The origin of the correlations between mass, morphology, quenched fraction, and formation history in galaxies is difficult to define, primarily due to the uncertainties in galaxy star-formation histories. Star-formation histories are better constrained for higher redshift galaxies, observed closer to their formation and quenching epochs. Here we use "non-parametric" star-formation histories and a nested sampling method to derive constraints on the formation and quenching timescales of quiescent galaxies at 0.7<z<2.50.7<z<2.5. We model deep HST grism spectroscopy and photometry from the CLEAR (CANDELS Lyman−α-\alpha Emission at Reionization) survey. The galaxy formation redshifts, z50z_{50} (defined as the point where they had formed 50\% of their stellar mass) range from z50∌2z_{50}\sim 2 (shortly prior to the observed epoch) up to z50≃5−8z_{50} \simeq 5-8. \editone{We find that early formation redshifts are correlated with high stellar-mass surface densities, log⁥Σ1/(M⊙ kpc−2)>\log \Sigma_1 / (M_\odot\ \mathrm{kpc}^{-2}) >10.25, where ÎŁ1\Sigma_1 is the stellar mass within 1~pkpc (proper kpc). Quiescent galaxies with the highest stellar-mass surface density, log⁥Σ1/(M⊙ kpc−2)>10.25\log\Sigma_1 / (M_\odot\ \mathrm{kpc}^{-2}) > 10.25, } show a \textit{minimum} formation redshift: all such objects in our sample have z50>2.9z_{50} > 2.9. Quiescent galaxies with lower surface density, $\log \Sigma_1 / (M_\odot\ \mathrm{kpc}^{-2}) = 9.5 - 10.25,showarangeofformationepochs(, show a range of formation epochs (z_{50} \simeq 1.5 - 8),implyingthesegalaxiesexperiencedarangeofformationandassemblyhistories.Wearguethatthesurfacedensitythreshold), implying these galaxies experienced a range of formation and assembly histories. We argue that the surface density threshold \log\Sigma_1/(M_\odot\ \mathrm{kpc}^{-2})>10.25$ uniquely identifies galaxies that formed in the first few Gyr after the Big Bang, and we discuss the implications this has for galaxy formation models.Comment: 13 pages, 7 figures, accepted for publication in ApJ. Includes an interactive online appendix (https://vince-ec.github.io/appendix/appendix

    CLEAR: Spatially Resolved Emission Lines and Active Galactic Nuclei at 0.6<z<1.30.6<z<1.3

    Get PDF
    We investigate spatially-resolved emission-line ratios in a sample of 219 galaxies (0.6<z<1.30.6<z<1.3) detected using the G102 grism on the \emph{Hubble Space Telescope} Wide Field Camera 3, taken as part of the CANDELS Lyα\alpha Emission at Reionization (CLEAR) survey, to measure ionization profiles and search for low-luminosity active galactic nuclei (AGN). We analyze \OIII\ and \Hb\ emission-line maps, enabling us to spatially resolve the \OIIIHb\ emission-line ratio across the galaxies in the sample. We compare the \OIIIHb\ ratio in galaxy centers and outer annular regions to measure ionization gradients and investigate the potential of sources with nuclear ionization to host AGN. We investigate some of the individual galaxies that are candidates to host strong nuclear ionization and find that they often have low stellar mass and are undetected in X-rays, as expected for low-luminosity AGN in low-mass galaxies. We do not find evidence for a significant population of off-nuclear AGN or other clumps of off-nuclear ionization. We model the observed distribution of \OIIIHb\ gradients and find that most galaxies are consistent with small or zero gradients, but 6-16\% of galaxies in the sample are likely to host nuclear \OIIIHb\ that is ∌\sim0.5~dex higher than in their outer regions. This study is limited by large uncertainties in most of the measured \OIIIHb\ spatial profiles, therefore deeper data, e.g, from deeper \textit{HST}/WFC3 programs or from \textit{JWST}/NIRISS, are needed to more reliably measure the spatially resolved emission-line conditions of individual high-redshift galaxies.Comment: 16 pages, 13 figures, 2 table

    CLEAR: The Gas-Phase Metallicity Gradients of Star-Forming Galaxies at 0.6 < z < 2.6

    Full text link
    We report on the gas-phase metallicity gradients of a sample of 264 star-forming galaxies at 0.6 < z < 2.6, measured through deep near-infrared Hubble Space Telescope slitless spectroscopy. The observations include 12-orbit depth Hubble/WFC3 G102 grism spectra taken as a part of the CANDELS Lya Emission at Reionization (CLEAR) survey, and archival WFC3 G102+G141 grism spectra overlapping the CLEAR footprint. The majority of galaxies (84%) in this sample are consistent with a zero or slightly positive metallicity gradient across the full mass range probed (8.5 < log M_*/M_sun < 10.5). We measure the intrinsic population scatter of the metallicity gradients, and show that it increases with decreasing stellar mass---consistent with previous reports in the literature, but confirmed here with a much larger sample. To understand the physical mechanisms governing this scatter, we search for correlations between the observed gradient and various stellar population properties at fixed mass. However, we find no evidence for a correlation with the galaxy properties we consider---including star-formation rates, sizes, star-formation rate surface densities, and star-formation rates per gravitational potential energy. We use the observed weakness of these correlations to provide material constraints for predicted intrinsic correlations from theoretical models.Comment: 19 pages, 10 figures (v2: typo fixed in Figure 10 label); submitted to Ap

    CLEAR: Paschen-ÎČ\beta Star Formation Rates and Dust Attenuation of Low Redshift Galaxies

    Full text link
    We use \Pab\ (1282~nm) observations from the Hubble Space Telescope (\HST) G141 grism to study the star-formation and dust attenuation properties of a sample of 29 low-redshift (z<0.287z < 0.287) galaxies in the CANDELS Lyα\alpha Emission at Reionization (CLEAR) survey. We first compare the nebular attenuation from \Pab/\Ha with the stellar attenuation inferred from the spectral energy distribution, finding that the galaxies in our sample are consistent with an average ratio of the continuum attenuation to the nebular gas of 0.44, but with a large amount of excess scatter beyond the observational uncertainties. Much of this scatter is linked to a large variation between the nebular dust attenuation as measured by (space-based) \Pab to (ground-based) \Ha to that from (ground-based) \Ha/\Hb. This implies there are important differences between attenuation measured from grism-based / wide-aperture \Pab fluxes and the ground-based / slit-measured Balmer decrement. We next compare star-formation rates (SFRs) from \Pab to those from dust-corrected UV. We perform a survival analysis to infer a census of \Pab\ emission implied by both detections and non-detections. We find evidence that galaxies with lower stellar mass have more scatter in their ratio of \Pab\ to attenuation-corrected UV SFRs. When considering our \Pab\ detection limits, this observation supports the idea that lower mass galaxies experience "burstier" star-formation histories. Together, these results show that \Pab\ is a valuable tracer of a galaxy's SFR, probing different timescales of star-formation and potentially revealing star-formation that is otherwise missed by UV and optical tracers.Comment: 19 pages, 14 figures, 2 table

    CLEAR: High-Ionization [Ne V] λ{\lambda}3426 Emission-line Galaxies at 1.4<z<2.31.4 <z< 2.3

    Get PDF
    We analyze a sample of 25 [Ne V] λ\lambda3426 emission-line galaxies at 1.4<z<2.31.4<z<2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS Lyman-α\alpha Emission at Reionization (CLEAR) survey. [Ne V] emission probes extremely energetic photoionization (97.11-126.21 eV), and is often attributed to energetic radiation from active galactic nuclei (AGN), shocks from supernova, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Ne V] in conjunction with other rest-frame UV/optical emission lines ([O II] λλ\lambda\lambda3726,3729, [Ne III] λ\lambda3869, HÎČ\beta, [O III] λλ\lambda\lambda4959,5007, Hα\alpha+[N II] λλ\lambda\lambda6548,6583, [S II] λλ\lambda\lambda6716,6731), deep (2--7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Ne V]-detected galaxies have properties consistent with ionization from AGN. However, for our [Ne V]-selected sample, the X-ray luminosities are consistent with local (zâ‰Č0.1z\lesssim 0.1) X-ray-selected Seyferts, but the [Ne V] luminosities are more consistent with those from z∌1z\sim 1 X-ray-selected QSOs. The excess [Ne V] emission requires either reduced hard X-rays, or a ∌\sim0.1 keV excess. We discuss possible origins of the apparent [Ne V] excess, which could be related to the ``soft (X-ray) excess'' observed in some QSOs and Seyferts, and/or be a consequence of a complex/anisotropic geometry for the narrow line region, combined with absorption from a warm, relativistic wind ejected from the accretion disk. We also consider implications for future studies of extreme high-ionization systems in the epoch of reionization (z≳6z \gtrsim 6) with JWST.Comment: 17 pages + 5 (appendix), 7 figures + 2(appendix

    Using [Ne V]/[Ne III] to Understand the Nature of Extreme-Ionization Galaxies

    Full text link
    Spectroscopic studies of extreme-ionization galaxies (EIGs) are critical to our understanding of exotic systems throughout cosmic time. These EIGs exhibit spectral features requiring >54.42 eV photons: the energy needed to fully ionize helium into He2+ and emit He II recombination lines. They are likely key contributors to reionization, and they can also probe exotic stellar populations or accretion onto massive black holes. To facilitate the use of EIGs as probes of high ionization, we focus on ratios constructed from strong rest-frame UV/optical emission lines, specifically [O III] 5008, H-beta, [Ne III] 3870, [O II] 3727,3729, and [Ne V] 3427. These lines probe the relative intensity at energies of 35.12, 13.62, 40.96, 13.62 eV, and 97.12, respectively, covering a wider range of ionization than traced by other common rest-frame UV/optical techniques. We use ratios of these lines ([Ne V]/[Ne III] = Ne53 and [Ne III]/[O II]), which are closely separated in wavelength, and mitigates effects of dust attenuation and uncertainties in flux calibration. We make predictions from photoionization models constructed from Cloudy that use a broad range of stellar populations and black hole accretion models to explore the sensitivity of these line ratios to changes in the ionizing spectrum. We compare our models to observations from the Hubble Space Telescope and James Webb Space Telescope of galaxies with strong high-ionization emission lines at z ~ 0, z ~ 2, and z ~ 7. We show that the Ne53 ratio can separate galaxies with ionization from 'normal' stellar populations from those with AGN and even 'exotic' Population III models. We introduce new selection methods to identify galaxies with photoionization driven by Population III stars or intermediate-mass black hole accretion disks that could be identified in upcoming high-redshift spectroscopic surveys.Comment: 16 pages, 5 figures, 1 table. Accepted in Ap

    Expectations of the size evolution of massive galaxies at 3≀z≀63 \leq z \leq 6 from the TNG50 simulation: the CEERS/JWST view

    Full text link
    We present a catalog of about 25,000 images of massive (M⋆≄109M⊙M_{\star} \ge 10^9 M_{\odot}) galaxies at redshift 3≀z≀63 \leq z \leq 6 from the TNG50 cosmological simulation, tailored for observations at multiple wavelengths carried out with JWST. The synthetic images were created with the SKIRT radiative transfer code, including the effects of dust attenuation and scattering. The noiseless images were processed with the mirage simulator to mimic the Near Infrared Camera (NIRCam) observational strategy (e.g., noise, dithering pattern, etc.) of the Cosmic Evolution Early Release Science (CEERS) survey. In this paper, we analyze the predictions of the TNG50 simulation for the size evolution of galaxies at 3≀z≀63 \leq z \leq 6 and the expectations for CEERS to probe that evolution. In particular, we investigate how sizes depend on wavelength, redshift, mass, and angular resolution of the images. We find that the effective radius accurately describes the three-dimensional half-mass radius of TNG50 galaxies. Sizes observed at 2~ÎŒ\mum are consistent with those measured at 3.56~ÎŒ\mum at all redshifts and masses. At all masses, the population of higher-zz galaxies is more compact than their lower-zz counterparts. However, the intrinsic sizes are smaller than the mock observed sizes for the most massive galaxies, especially at zâ‰Č4z \lesssim 4. This discrepancy between the mass and light distribution may point to a transition in the galaxy morphology at zz=4-5, where massive compact systems start to develop more extended stellar structures.Comment: Accepted for publication in ApJ (20 pages, 12 figures). Data publicly released at https://www.tng-project.org/costantin22 and at https://www.lucacostantin.com/OMEG

    Probing the earliest phases in the formation of massive galaxies with simulated HST+JWST imaging data from Illustris

    Full text link
    We use the Illustris-1 simulation to explore the capabilities of the Hubble\textit{Hubble} and James Webb Space Telescope\textit{James Webb Space Telescope} data to analyze the stellar populations in high-redshift galaxies, taking advantage of the combined depth, spatial resolution, and wavelength coverage. For that purpose, we use simulated broad-band ACS, WFC3 and NIRCam data and 2-dimensional stellar population synthesis (2D-SPS) to derive the integrated star formation history (SFH) of massive (M∗>1010 _{\ast}>10^{10}\,M⊙_{\odot}) simulated galaxies at 11011 110^{11}\,M⊙_{\odot} galaxy. In particular, we explore the potential of HST and JWST datasets reaching a depth similar to those of the CANDELS and ongoing CEERS observations, respectively, and concentrate on determining the capabilities of this dataset for characterizing the first episodes in the SFH of local M∗>1011 _{\ast}>10^{11}\,M⊙_{\odot} galaxies by studying their progenitors at z>1z>1. The 2D-SPS method presented in this paper has been calibrated to robustly recover the cosmic times when the first star formation episodes occurred in massive galaxies, i.e., the first stages in their integrated SFHs. In particular, we discuss the times when the first 1% to 50% of their total stellar mass formed in the simulation. We demonstrate that we can recover these ages with typical median systematic offset of less than 5% and scatter around 20%-30%. According to our measurements on Illustris data, we are able to recover that local M∗>1011 _{\ast}>10^{11}\,M⊙_{\odot} galaxies would have started their formation by z=16z=16, forming the first 5% of their stellar mass present at z∌1z \sim 1 by z=4.5z=4.5, 10% by z=3.7z=3.7, and 25% by z=2.7z=2.7.Comment: 28 pages, 13 figures, 4 tables. ApJ in press. Summary of changes from original submission: the major change is that we now include in Sec. 6 the comparison of the results obtained for our sample of massive 1 < z < 4 progenitors with those obtained by considering all massive galaxies at 1 < z < 4 in the simulated images. Several figures and sections have been update

    NGDEEP Epoch 1: Spatially Resolved Hα\alpha Observations of Disk and Bulge Growth in Star-Forming Galaxies at z∌z \sim 0.6-2.2 from JWST NIRISS Slitless Spectroscopy

    Full text link
    We study the Hα\alpha equivalent width, EW(Hα\alpha), maps of 19 galaxies at 0.6<z<2.20.6 < z < 2.2 in the Hubble Ultra Deep Field (HUDF) derived from NIRISS slitless spectroscopy as part of the Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey. Our galaxies mostly lie on the star-formation main sequence with a stellar mass range of 109−1011M⊙\mathrm{10^9 - 10^{11} M_\odot}, and are therefore characteristic of "typical" star-forming galaxies at these redshifts. Leveraging deep HST and JWST broad-band images, spanning 0.4-4 ÎŒ\mum, we perform spatially-resolved fitting of the spectral energy distributions (SEDs) for these galaxies and construct specific star formation rate (sSFR) and stellar-mass-weighted age maps. We compare these to the EW(Hα\alpha) maps with a spatial resolution of ∌\sim1 kpc. The pixel-to-pixel EW(Hα\alpha) increases with increasing sSFR and with decreasing age, with the average trend slightly different from the relations derived from integrated fluxes of galaxies from the literature. Quantifying the radial profiles of EW(Hα\alpha), sSFR, and age, the majority (84%) of galaxies show positive EW(Hα\alpha) gradients, positive sSFR gradients, and negative age gradients, in line with the the inside-out quenching scenario. A few galaxies (16%) show inverse (and flat) trends possibly due to merging or starbursts. Comparing the distributions of EW(Hα\alpha) and sSFR to the star formation history models as a function of galactocentric radius, the central region of galaxies (e.g., their bulges) have experienced, at least one, rapid star-formation episodes, which leads to the formation of bulge, while their outer regions (e.g., disks) grow in a more steady-state. These results demonstrate the ability to study resolved star formation in distant galaxies with JWST NIRISS.Comment: 22 pages, 11 figure
    • 

    corecore