10 research outputs found

    One-year safety and efficacy of mitapivat in sickle cell disease:follow-up results of a phase 2, open-label study

    Get PDF
    Targeting the primary pathogenic event of sickle cell disease (SCD), the polymerization of sickle hemoglobin (HbS), may prevent downstream clinical events. Mitapivat, an oral pyruvate kinase (PK) activator, has therapeutic potential by increasing adenosine triphosphate (ATP) and decreasing 2,3-diphosphoglycerate (2,3-DPG), a glycolytic red blood cell (RBC) intermediate. In the previously reported 8-week dose-finding period of this phase 2, investigator-initiated, open-label study, mitapivat was well tolerated and showed efficacy in SCD. Here, the 1-year fixed-dose extension period is reported in which 9 of 10 included patients (90%) aged ≥16 years with SCD (HbSS, HbS/β0, or HbS/β+) continued with mitapivat. Mostly mild treatment-emergent adverse events (AEs) (most commonly, transaminase increase and headache) were still reported. Apart from the reported nontreatment-related serious AE (SAE) of a urinary tract infection in the dose-finding period, 1 nontreatment-related SAE occurred in the fixed-dose extension period in a patient who died of massive pulmonary embolism due to COVID-19. Importantly, sustained improvement in Hb level (mean increase, 1.1 ± 0.7 g/dL; P = .0014) was seen, which was accompanied by decreases in markers of hemolysis. In addition, the annualized rate of vaso-occlusive events reduced significantly from a historic baseline of 1.33 ± 1.32 to 0.64 ± 0.87 (P = .0489) when combining the dose-finding period and fixed-dose extension period. Cellularly, the ATP:2,3-DPG ratio and Hb-oxygen affinity significantly increased and RBC sickling (point of sickling) nonsignificantly reduced. Overall, this study demonstrated 1-year safety and efficacy of treatment with mitapivat in SCD, supporting further evaluation in ongoing phase 2/3 study (RISE UP, NCT05031780). This trial was registered at https://www.clinicaltrialsregister.eu/as NL8517 and EudraCT 2019-003438-18.</p

    Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease

    Get PDF
    Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p &lt; 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p &lt; 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment.</p

    Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease

    Get PDF
    Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p &lt; 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p &lt; 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment.</p

    One-year safety and efficacy of mitapivat in sickle cell disease: follow-up results of a phase 2, open-label study

    Get PDF
    Targeting the primary pathogenic event of sickle cell disease (SCD), the polymerization of sickle hemoglobin (HbS), may prevent downstream clinical events. Mitapivat, an oral pyruvate kinase (PK) activator, has therapeutic potential by increasing adenosine triphosphate (ATP) and decreasing 2,3-diphosphoglycerate (2,3-DPG), a glycolytic red blood cell (RBC) intermediate. In the previously reported 8-week dose-finding period of this phase 2, investigator-initiated, open-label study, mitapivat was well tolerated and showed efficacy in SCD. Here, the 1-year fixed-dose extension period is reported in which 9 of 10 included patients (90%) aged ≥16 years with SCD (HbSS, HbS/β0, or HbS/β+) continued with mitapivat. Mostly mild treatment-emergent adverse events (AEs) (most commonly, transaminase increase and headache) were still reported. Apart from the reported nontreatment-related serious AE (SAE) of a urinary tract infection in the dose-finding period, 1 nontreatment-related SAE occurred in the fixed-dose extension period in a patient who died of massive pulmonary embolism due to COVID-19. Importantly, sustained improvement in Hb level (mean increase, 1.1 ± 0.7 g/dL; P = .0014) was seen, which was accompanied by decreases in markers of hemolysis. In addition, the annualized rate of vaso-occlusive events reduced significantly from a historic baseline of 1.33 ± 1.32 to 0.64 ± 0.87 (P = .0489) when combining the dose-finding period and fixed-dose extension period. Cellularly, the ATP:2,3-DPG ratio and Hb-oxygen affinity significantly increased and RBC sickling (point of sickling) nonsignificantly reduced. Overall, this study demonstrated 1-year safety and efficacy of treatment with mitapivat in SCD, supporting further evaluation in ongoing phase 2/3 study (RISE UP, NCT05031780). This trial was registered at https://www.clinicaltrialsregister.eu/ as NL8517 and EudraCT 2019-003438-18

    Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease

    Get PDF
    Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p  < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p  < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment

    One-year safety and efficacy of mitapivat in sickle cell disease:follow-up results of a phase 2, open-label study

    Get PDF
    Targeting the primary pathogenic event of sickle cell disease (SCD), the polymerization of sickle hemoglobin (HbS), may prevent downstream clinical events. Mitapivat, an oral pyruvate kinase (PK) activator, has therapeutic potential by increasing adenosine triphosphate (ATP) and decreasing 2,3-diphosphoglycerate (2,3-DPG), a glycolytic red blood cell (RBC) intermediate. In the previously reported 8-week dose-finding period of this phase 2, investigator-initiated, open-label study, mitapivat was well tolerated and showed efficacy in SCD. Here, the 1-year fixed-dose extension period is reported in which 9 of 10 included patients (90%) aged ≥16 years with SCD (HbSS, HbS/β0, or HbS/β+) continued with mitapivat. Mostly mild treatment-emergent adverse events (AEs) (most commonly, transaminase increase and headache) were still reported. Apart from the reported nontreatment-related serious AE (SAE) of a urinary tract infection in the dose-finding period, 1 nontreatment-related SAE occurred in the fixed-dose extension period in a patient who died of massive pulmonary embolism due to COVID-19. Importantly, sustained improvement in Hb level (mean increase, 1.1 ± 0.7 g/dL; P = .0014) was seen, which was accompanied by decreases in markers of hemolysis. In addition, the annualized rate of vaso-occlusive events reduced significantly from a historic baseline of 1.33 ± 1.32 to 0.64 ± 0.87 (P = .0489) when combining the dose-finding period and fixed-dose extension period. Cellularly, the ATP:2,3-DPG ratio and Hb-oxygen affinity significantly increased and RBC sickling (point of sickling) nonsignificantly reduced. Overall, this study demonstrated 1-year safety and efficacy of treatment with mitapivat in SCD, supporting further evaluation in ongoing phase 2/3 study (RISE UP, NCT05031780). This trial was registered at https://www.clinicaltrialsregister.eu/as NL8517 and EudraCT 2019-003438-18.</p
    corecore