71 research outputs found

    Operation of HVDC Modular Multilevel Converters under DC pole imbalances

    No full text

    Engaging diverse underserved communities to bridge the mammography divide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer screening continues to be underutilized by the population in general, but is particularly underutilized by traditionally underserved minority populations. Two of the most at risk female minority groups are American Indians/Alaska Natives (AI/AN) and Latinas. American Indian women have the poorest recorded 5-year cancer survival rates of any ethnic group while breast cancer is the number one cause of cancer mortality among Latina women. Breast cancer screening rates for both minority groups are near or at the lowest among all racial/ethnic groups. As with other health screening behaviors, women may intend to get a mammogram but their intentions may not result in initiation or follow through of the examination process. An accumulating body of research, however, demonstrates the efficacy of developing 'implementation intentions' that define when, where, and how a specific behavior will be performed. The formulation of intended steps in addition to addressing potential barriers to test completion can increase a person's self-efficacy, operationalize and strengthen their intention to act, and close gaps between behavioral intention and completion. To date, an evaluation of the formulation of implementation intentions for breast cancer screening has not been conducted with minority populations.</p> <p>Methods/Design</p> <p>In the proposed program, community health workers will meet with rural-dwelling Latina and American Indian women one-on-one to educate them about breast cancer and screening and guide them through a computerized and culturally tailored "implementation intentions" program, called <it>Healthy Living Kansas - Breast Health</it>, to promote breast cancer screening utilization. We will target Latina and AI/AN women from two distinct rural Kansas communities. Women attending community events will be invited by CHWs to participate and be randomized to either a mammography "implementation intentions" (<b>MI</b><sup><b>2</b></sup>) intervention or a comparison general breast cancer prevention informational intervention (<b>C</b>). CHWs will be armed with notebook computers loaded with our Healthy Living Kansas - Breast Health program and guide their peers through the program. Women in the <b>MI</b><sup><b>2 </b></sup>condition will receive assistance with operationalizing their screening intentions and identifying and addressing their stated screening barriers with the goal of guiding them toward accessing screening services near their community. Outcomes will be evaluated at 120-days post randomization via self-report and will include mammography utilization status, barriers, and movement along a behavioral stages of readiness to screen model.</p> <p>Discussion</p> <p>This highly innovative project will be guided and initiated by AI/AN and Latina community members and will test the practical application of emerging behavioral theory among minority persons living in rural communities.</p> <p>Trial Registration</p> <p>ClinicalTrials (NCT): <a href="http://www.clinicaltrials.gov/ct2/show/NCT01267110">NCT01267110</a></p

    Effective anisotropic elastic constants of bimaterial interphases: comparison between experimental and analytical techniques

    Full text link
    The effective elastic constants of a bimaterial composite were experimentally measured with the goal of validating the numerical predications of these constants made by homogenization theory. Secondly, solutions predicted by homogenization theory were compared to predictions made with more standard composite theories. Composite specimens consisting of titanium and epoxy were developed to mimic a porous titanium/tissue interphase. Tensile and shear tests (ASTM D3983) measured the stiffness along the porous coating/epoxy interphase ( E L ), across the interphase ( E T ) and in shear ( G LT ). No significant differences in moduli were found between the experimental measurements and predictions made with homogenization theory, nor between the experimental measurements and Hashin-Shtrikman estimates. Homogenization theory predicted results usually within 20% of Hashin-Shtrikman estimates, but typically more than 50% different from what is predicted by the rule of mixtures. However, homogenization theory allows calculation of anisotropic stiffness estimates and local strains, neither of which is possible using Hashin-Shtrikman estimates. With this experimental validation, the accuracy of homogenization theory for use in implant/tissue interface mechanics applications is confirmed. Since the composite interphase is anisotropic and more compliant in the transverse direction, with stiffness an order of magnitude lower across the interphase, local mechanics, tissue ingrowth and remodeling may be strongly directional dependent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46748/1/10856_2004_Article_BF00058722.pd

    Partial Power Operation of Multi-level Modular Converters under Subsystem Faults

    No full text

    Lab-scale experimental multilevel modular HVDC converter with temperature controlled cells

    No full text

    Experimental study on the influence of MMC control design on the propagation of AC grid-unbalance to a DC network

    No full text
    The Modular Multilevel Converter (MMC) has become the leading technology for delivering High Voltage DC (HVDC) power transmission, due to its scalability, harmonic quality and ability to ride through AC network faults. However, unbalanced AC-Grid conditions create harmonics at twice the fundamental AC-Grid frequency that can propagate to the DC-side as a result of the unbalance in the arm energy. These harmonics may risk excitation of network resonances as well as the maloperation of connected assets, and thus control action is needed to suppress such harmonics. Several different control solutions have been proposed in the literature and the aim of this paper is to provide a comparison of the performance of a sample of these techniques on a 1.2 kV/12 kVA lab-scale MMC demonstrator and cable emulator under unbalanced AC-Grid conditions. The sample of control methods chosen showcases a range of design complexity from basic direct modulation techniques with no DC current control to advanced energy based controllers. Experimental testing of these controllers under the same test condition not only validates the operation of each individual controller but also allows like-for-like comparison of their relative performance. It was found that the controllers tested were capable of significantly suppressing double line-frequency components on the DC -bus compared to the base case, however the more complex controllers had the additional benefit of being able to tune the transient response
    • …
    corecore