141 research outputs found

    Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor

    Get PDF
    Mechanisms by which blood cells sense shear stress are poorly characterized. In platelets, glycoprotein (GP)Ib-IX receptor complex has been long suggested to be a shear sensor and receptor. Recently, a relatively unstable and mechanosensitive domain in the GPIba subunit of GPIb-IX was identified. Here we show that binding of its ligand, von Willebrand factor, under physiological shear stress induces unfolding of this mechanosensory domain (MSD) on the platelet surface. The unfolded MSD, particularly the juxtamembrane € Trigger' sequence therein, leads to intracellular signalling and rapid platelet clearance. These results illustrate the initial molecular event underlying platelet shear sensing and provide a mechanism linking GPIb-IX to platelet clearance. Our results have implications on the mechanism of platelet activation, and on the pathophysiology of von Willebrand disease and related thrombocytopenic disorders. The mechanosensation via receptor unfolding may be applicable for many other cell adhesion receptors

    The thrombotic potential of oral pathogens

    Get PDF
    In recent times the concept of infectious agents playing a role in cardiovascular disease has attracted much attention. Chronic oral disease such as periodontitis, provides a plausible route for entry of bacteria to the circulation. Upon entry to the circulation, the oral bacteria interact with platelets. It has been proposed that their ability to induce platelet aggregation and support platelet adhesion is a critical step in the pathogenesis of the infection process. Many published studies have demonstrated multiple mechanisms through which oral bacteria are able to bind to and activate platelets. This paper will review the various mechanisms oral bacteria use to interact with platelets

    Platelet collagen receptors

    No full text
    Collagens are important platelet activators in the vascular subendothelium and vessel wall. Since the regulation of platelet activation is a key step in distinguishing normal haemostasis from pathological thrombosis, collagen interactions with platelets are important targets for pharmacological control. Platelets have two major receptors for collagens, the integrin alpha2beta1, with a major role in adhesion and platelet anchoring and the Ig superfamily member, GPVI, principally responsible for signalling and platelet activation. In addition, GPIb-V-IX, can be considered as an indirect collagen receptor acting via von Willebrand factor as bridging molecule and is essential for platelet interactions with collagen at high shear rates. There is some evidence for additional receptors, which may regulate the response to individual collagen types. This review discusses how these receptors work separately with specific agonists and proposes possible mechanisms for how they work together to regulate platelet activation by collagen, which remains controversial and poorly understood

    Platelet receptor signalling

    No full text

    Integrins and cardiovascular disease

    No full text
    Cardiovascular diseases involve abnormal cell-cell interactions leading to the development of atherosclerotic plaque, which when ruptured causes massive platelet activation and thrombus formation. Parts of a loose thrombus may detach to form an embolus, blocking circulation at a more distant point. The integrins are a family of adhesive cell receptors interacting with adhesive proteins or with counterreceptors on other cells. There is now solid evidence that the major integrin on platelets, the fibrinogen receptor alpha IIb beta 3, has an important role in several aspects of cardiovascular diseases and that its regulated inhibition leads to a reduction in incidence and mortality due to these disorders. The development of alpha IIb beta 3 inhibitors is an important strategy of many pharmaceutical companies which foresee a large market for the treatment of acute conditions in surgery, the symptoms of chronic conditions and, it is hoped, maybe even the successful prophylaxis of these conditions. Although all the associated problems have not been solved, the undoubted improvements in patient care resulting from the first of these treatments in the clinic have stimulated further research on the role of integrins on other vascular cells in these processes and in the search for new inhibitors. Both the development of specific inhibitors and of mice with specific integrin subunit genes ablated have contributed to a better understanding of the function of integrins in development of the cardiovascular system

    Platelet receptor signalling

    Get PDF
    Page range: 97-121Note: an update to Footnote 8 was included in the Table of Contents of Indonesia volume 66. A link to this document is included in the "related publication" section of this record

    Platelet collagen receptors: a new target for inhibition?

    No full text
    Collagen is a major component of extracellular matrix and a wide variety of types exist. Cells recognise collagen in different ways depending on sequence and structure. They can recognise predominantly primary sequence, they may require triple-helical structure or they can require fibrillar structures. Since collagens are major constituents of the subendothelium that determine the thrombogenicity of the injured or pathological vessel wall, a major role is induction of platelet activation and aggregation as the start of repair processes. Platelets have at least two direct and one indirect (via von Willebrand factor) receptors for collagen, and collagen has specific recognition motifs for these receptors. These receptors and recognition motifs are under intensive investigation in the search for possible methods to control platelet activation in vivo. A wide range of proteins has been identified and, in part, characterised from both haematophageous insects and invertebrates but also from snake venoms that inhibit platelet activation by collagen or induce platelet activation via collagen receptors on platelets. These will provide model systems to test the effect of inhibition of specific collagen-platelet receptor interactions for both effectiveness as well as for side effects and should provide assay systems for the development of small molecule inhibitors. Since platelet inhibitors for long-term prophylaxis of cardiovascular diseases are still in clinical trials there are many unanswered questions about long-term effects both positive and negative. The major problem which still has to be definitively solved about these alternative approaches to inhibition of platelet activation is whether they will show advantages in terms of dose-response curves while offering decreased risks of bleeding problems. Preliminary studies would seem to suggest that this is indeed the case
    corecore