47 research outputs found
Montecarlo simulation of the role of defects as the melting mechanism
We study in this paper the melting transition of a crystal of fcc structure
with the Lennard-Jones potential, by using isobaric-isothermal Monte Carlo
simulations.
Local and collective updates are sequentially used to optimize the
convergence. We show the important role played by defects in the melting
mechanism in favor of modern melting theories.Comment: 6 page, 10 figures included. Corrected version to appear in Phys.
Rev.
Pond canopy cover: a resource gradient for anuran larvae
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72395/1/j.1365-2427.2005.01497.x.pd
Liquid 4He: contributions to first principles theory of quantized vortices, thermohydrodynamic properties, and the lambda transition
Liquid 4He has been studied extensively for almost a century, but there are
still a number of outstanding weak or missing links in our comprehension of it.
This paper reviews some of the principal paths taken in previous research and
then proceeds to fill gaps and create an integrated picture with more complete
understanding through first principles treatment of a realistic model that
starts with a microscopic, atomistic description of the liquid. Newly derived
results for vortex cores and thermohydrodynamic properties for a two-fluid
model are used to show that interacting quantized vortices may produce a lambda
anomaly in specific heat near the superfluid transition where flow properties
change. The nature of the order in the superfluid state is explained.
Experimental support for new calculations is exhibited, and a unique specific
heat experiment is proposed to test predictions of the theory. Relevance of the
theory to modern research in cosmology, astrophysics, and Bose-Einstein
condensates is discussed.Comment: 155 pages, 28 figure