2,145 research outputs found
Smallpox vaccination-elicited antibodies cross-neutralize 2022-Monkeypox virus Clade II
Since early May 2022, some monkeypox virus (MPXV) infections have been reported from countries where the disease is not endemic. Within 2 months, the number of patients has increased extensively, becoming the most considerable MPXV outbreak described. Smallpox vaccines demonstrated high efficacy against MPXVs in the past and are considered a crucial outbreak control measure. However, viruses isolated during the current outbreak carry distinct genetic variations, and the cross-neutralizing capability of antibodies remains to be assessed. Here we report that serum antibodies elicited by first-generation smallpox vaccines can neutralize the current MPXV more than 40 years after vaccine administration
Lower Bounds for Structuring Unreliable Radio Networks
In this paper, we study lower bounds for randomized solutions to the maximal
independent set (MIS) and connected dominating set (CDS) problems in the dual
graph model of radio networks---a generalization of the standard graph-based
model that now includes unreliable links controlled by an adversary. We begin
by proving that a natural geographic constraint on the network topology is
required to solve these problems efficiently (i.e., in time polylogarthmic in
the network size). We then prove the importance of the assumption that nodes
are provided advance knowledge of their reliable neighbors (i.e, neighbors
connected by reliable links). Combined, these results answer an open question
by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC
2011] are optimal with respect to their dual graph model assumptions. They also
provide insight into what properties of an unreliable network enable efficient
local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of
the International Symposium on Distributed Computing (DISC
Relativistic coupled-cluster calculations of Ne, Ar, Kr and Xe: correlation energies and dipole polarizabilities
We have carried out a detailed and systematic study of the correlation
energies of inert gas atoms Ne, Ar, Kr and Xe using relativistic many-body
perturbation theory and relativistic coupled-cluster theory. In the
relativistic coupled-cluster calculations, we implement perturbative triples
and include these in the correlation energy calculations. We then calculate the
dipole polarizability of the ground states using perturbed coupled-cluster
theory.Comment: 10 figures, 6 tables, submitted to PR
Physical origin of the power-law tailed statistical distributions
Starting from the BBGKY hierarchy, describing the kinetics of nonlinear
particle system, we obtain the relevant entropy and stationary distribution
function. Subsequently, by employing the Lorentz transformations we propose the
relativistic generalization of the exponential and logarithmic functions. The
related particle distribution and entropy represents the relativistic extension
of the classical Maxwell-Boltzmann distribution and of the Boltzmann entropy
respectively and define the statistical mechanics presented in [Phys. Rev. E
{\bf 66}, 056125 (2002)] and [Phys. Rev. E {\bf 72}, 036108 (2005). The
achievements of the present effort, support the idea that the experimentally
observed power law tailed statistical distributions in plasma physics, are
enforced by the relativistic microscopic particle dynamics.Comment: 6 pages. arXiv admin note: substantial text overlap with
arXiv:1110.3944, arXiv:1012.390
Inequality, mobility and the financial accumulation process: A computational economic analysis
Our computational economic analysis investigates the relationship between inequality, mobility and the financial accumulation process. Extending the baseline model by Levy et al., we characterise the economic process trough stylised return structures generating alternative evolutions of income and wealth through historical time. First we explore the limited heuristic contribution of one and two factors models comprising one single stock (capital wealth) and one single flow factor (labour) as pure drivers of income and wealth generation and allocation over time. Then we introduce heuristic modes of taxation in line with the baseline approach. Our computational economic analysis corroborates that the financial accumulation process featuring compound returns plays a significant role as source of inequality, while institutional configurations including taxation play a significant role in framing and shaping the aggregate economic process that evolves over socioeconomic space and time
Effective and selective extraction of quercetin from onion (Allium cepa l.) skin waste using water dilutions of acid-based deep eutectic solvents
Deep Eutectic Solvents (DESs) are experiencing growing interest as substitutes of polluting organic solvents for their low or absent toxicity and volatility. Moreover, they can be formed with natural bioavailable and biodegradable molecules; they are synthesized in absence of hazardous solvents. DESs are, inter alia, successfully used for the extraction/preconcentration of biofunctional molecules from complex vegetal matrices. Onion skin is a highly abundant waste material which represents a reservoir of molecules endowed with valuable biological properties such as quercetin and its glycosylated forms. An efficient extraction of these molecules from dry onion skin from “Dorata di Parma” cultivar was obtained with water dilution of acid-based DESs. Glycolic acid (with betaine 2/1 molar ratio and L-Proline 3/1 molar ratio as counterparts) and of p-toluensulphonic acid (with benzyltrimethylammonium methanesulfonate 1/1 molar ratio)-based DESs exhibited more than 3-fold higher extraction efficiency than methanol (14.79 μg/mL, 18.56 μg/mL, 14.83 μg/mL vs. 5.84 μg/mL, respectively). The extracted quercetin was also recovered efficaciously (81% of recovery) from the original extraction mixture. The proposed extraction protocol revealed to be green, efficacious and selective for the extraction of quercetin from onion skin and it could be useful for the development of other extraction procedures from other biological matrixes
Inequality, Mobility and the Financial Accumulation Process: A Computational Economic Analysis
Our computational economic analysis investigates the relationship between inequality, mobility and the financial accumulation process. Extending the baseline model by Levy et al., we characterise the economic process through stylised return structures generating alternative evolutions of income and wealth through time. First, we explore the limited heuristic contribution of one and two-factors models comprising one single stock (capital wealth) and one single flow factor (labour) as pure drivers of income and wealth generation and allocation over time. Second, we introduce heuristic modes of taxation in line with the baseline approach. Our computational economic analysis corroborates that the financial accumulation process featuring compound returns plays a significant role as source of inequality, while institutional arrangements including taxation play a significant role in framing and shaping the aggregate economic process that evolves over socioeconomic space and time
Dual-domain reporter approach for multiplex identification of major SARS-CoV-2 variants of concern in a microarray-based assay
: Since the emergence of the COVID-19 pandemic in December 2019, the SARS-CoV-2 virus continues to evolve into many variants emerging around the world. To enable regular surveillance and timely adjustments in public health interventions, it is of the utmost importance to accurately monitor and track the distribution of variants as rapidly as possible. Genome sequencing is the gold standard for monitoring the evolution of the virus, but it is not cost-effective, rapid and easily accessible. We have developed a microarray-based assay that can distinguish known viral variants present in clinical samples by simultaneously detecting mutations in the Spike protein gene. In this method, the viral nucleic acid, extracted from nasopharyngeal swabs, after RT-PCR, hybridizes in solution with specific dual-domain oligonucleotide reporters. The domains complementary to the Spike protein gene sequence encompassing the mutation form hybrids in solution that are directed by the second domain ("barcode" domain) at specific locations on coated silicon chips. The method utilizes characteristic fluorescence signatures to unequivocally differentiate, in a single assay, different known SARS-CoV-2 variants. In the nasopharyngeal swabs of patients, this multiplex system was able to genotype the variants which have caused waves of infections worldwide, reported by the WHO as being of concern (VOCs), namely Alpha, Beta, Gamma, Delta and Omicron variants
Zero-variance principle for Monte Carlo algorithms
We present a general approach to greatly increase at little cost the
efficiency of Monte Carlo algorithms. To each observable to be computed we
associate a renormalized observable (improved estimator) having the same
average but a different variance. By writing down the zero-variance condition a
fundamental equation determining the optimal choice for the renormalized
observable is derived (zero-variance principle for each observable separately).
We show, with several examples including classical and quantum Monte Carlo
calculations, that the method can be very powerful.Comment: 9 pages, Latex, to appear in Phys. Rev. Let
- …