5,323 research outputs found

    Mixing with the radiofrequency single-electron transistor

    Full text link
    By configuring a radio-frequency single-electron transistor as a mixer, we demonstrate a unique implementation of this device, that achieves good charge sensitivity with large bandwidth about a tunable center frequency. In our implementation we achieve a measurement bandwidth of 16 MHz, with a tunable center frequency from 0 to 1.2 GHz, demonstrated with the transistor operating at 300 mK. Ultimately this device is limited in center frequency by the RC time of the transistor's center island, which for our device is ~ 1.6 GHz, close to the measured value. The measurement bandwidth is determined by the quality factor of the readout tank circuit.Comment: Submitted to APL september 200

    High-Frequency Nanofluidics: An Experimental Study using Nanomechanical Resonators

    Full text link
    Here we apply nanomechanical resonators to the study of oscillatory fluid dynamics. A high-resonance-frequency nanomechanical resonator generates a rapidly oscillating flow in a surrounding gaseous environment; the nature of the flow is studied through the flow-resonator interaction. Over the broad frequency and pressure range explored, we observe signs of a transition from Newtonian to non-Newtonian flow at ωτ≈1\omega\tau\approx 1, where τ\tau is a properly defined fluid relaxation time. The obtained experimental data appears to be in close quantitative agreement with a theory that predicts purely elastic fluid response as ωτ→∞\omega\tau\to \infty

    The relation between repeated 6-minute walk test performance and outcome in patients with chronic heart failure

    Get PDF
    Objective: To assess the prognostic implications of the 6-minute walk test (6-MWT) distance measured twice, one year apart, in a large sample of patients with chronic heart failure (CHF) followed for an extended period ( > . 8. years from baseline). Material and methods: Patients undertook a 6-MWT at baseline and at one year, and were followed up for 8. years from baseline. Results: Six hundred patients (median [inter-quartile range, IQR]) (age 78 [72-84] years; 75% males; body mass index 27 [25-31] kg·m -2 ; left ventricular ejection fraction 34 [26-38] %) were included. At baseline, median 6-MWT distance was 232 (60-386) m. There was no significant change in 6-MWT distance at one year (change -12m; P=0.533). During a median follow-up of 8.0years in survivors, 396patients had died (66%). Four variables were independent predictors of all-cause mortality in a multivariable Cox model (adjusted for body mass index, age, QRS duration, left ventricular ejection fraction); increasing NT pro-BNP, decreasing 6-MWT distance at 1year, decreasing haemoglobin, and increasing urea. Conclusions: Distance walked during the 6-MWT is an independent predictor of all-cause mortality in patients with CHF. In survivors, the 6-MWT distance is stable at 1 year. The 6-MWT distance at 1 year carries similar prognostic information. © 2014 Elsevier Masson SAS

    Hot electrons in low-dimensional phonon systems

    Full text link
    A simple bulk model of electron-phonon coupling in metals has been surprisingly successful in explaining experiments on metal films that actually involve surface- or other low-dimensional phonons. However, by an exact application of this standard model to a semi-infinite substrate with a free surface, making use of the actual vibrational modes of the substrate, we show that such agreement is fortuitous, and that the model actually predicts a low-temperature crossover from the familiar T^5 temperature dependence to a stronger T^6 log T scaling. Comparison with existing experiments suggests a widespread breakdown of the standard model of electron-phonon thermalization in metals

    Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems

    Full text link
    We explore the quantum aspects of an elastic bar supported at both ends and subject to compression. If strain rather than stress is held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain playing the role of temperature. We calculate the quantum fluctuations about the classical value as a function of strain. Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter

    Multiplication in Silicon p-n Junctions

    Get PDF

    The Effect of Mechanical Resonance on Josephson Dynamics

    Full text link
    We study theoretically dynamics in a Josephson junction coupled to a mechanical resonator looking at the signatures of the resonance in d.c. electrical response of the junction. Such a system can be realized experimentally as a suspended ultra-clean carbon nanotube brought in contact with two superconducting leads. A nearby gate electrode can be used to tune the junction parameters and to excite mechanical motion. We augment theoretical estimations with the values of setup parameters measured in the samples fabricated. We show that charging effects in the junction give rise to a mechanical force that depends on the superconducting phase difference. The force can excite the resonant mode provided the superconducting current in the junction has oscillating components with a frequency matching the resonant frequency of the mechanical resonator. We develop a model that encompasses the coupling of electrical and mechanical dynamics. We compute the mechanical response (the effect of mechanical motion) in the regime of phase bias and d.c. voltage bias. We thoroughly investigate the regime of combined a.c. and d.c. bias where Shapiro steps are developed and reveal several distinct regimes characteristic for this effect. Our results can be immediately applied in the context of experimental detection of the mechanical motion in realistic superconducting nano-mechanical devices.Comment: 18 pages, 11 figure

    Scaling Law in Carbon Nanotube Electromechanical Devices

    Full text link
    We report a method for probing electromechanical properties of multiwalled carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly clamped suspended CNT electrostatically deflected by a gate electrode. We measure the maximum deflection as a function of the applied gate voltage. Data from different CNTs scale into an universal curve within the experimental accuracy, in agreement with a continuum model prediction. This method and the general validity of the scaling law constitute a very useful tool for designing actuators and in general conducting nanowire-based NEMS.Comment: 12 pages, 4 figures. To be published in Phys. Rev. Let

    Heat capacity of a thin membrane at very low temperature

    Full text link
    We calculate the dependence of heat capacity of a free standing thin membrane on its thickness and temperature. A remarkable fact is that for a given temperature there exists a minimum in the dependence of the heat capacity on the thickness. The ratio of the heat capacity to its minimal value for a given temperature is a universal function of the ratio of the thickness to its value corresponding to the minimum. The minimal value of the heat capacitance for given temperature is proportional to the temperature squared. Our analysis can be used, in particular, for optimizing support membranes for microbolometers

    Diffusion-induced dephasing in nanomechanical resonators

    Get PDF
    We study resonant response of an underdamped nanomechanical resonator with fluctuating frequency. The fluctuations are due to diffusion of molecules or microparticles along the resonator. They lead to broadening and change of shape of the oscillator spectrum. The spectrum is found for the diffusion confined to a small part of the resonator and where it occurs along the whole nanobeam. The analysis is based on extending to the continuous limit, and appropriately modifying, the method of interfering partial spectra. We establish the conditions of applicability of the fluctuation-dissipation relations between the susceptibility and the power spectrum. We also find where the effect of frequency fluctuations can be described by a convolution of the spectra without these fluctuations and with them as the only source of the spectral broadening.Comment: 10 page
    • …
    corecore