5,676 research outputs found
Discrete solitons in electromechanical resonators
We consider a parametrically driven Klein--Gordon system describing micro-
and nano-devices, with integrated electrical and mechanical functionality.
Using a multiscale expansion method we reduce the system to a discrete
nonlinear Schrodinger equation. Analytical and numerical calculations are
performed to determine the existence and stability of fundamental bright and
dark discrete solitons admitted by the Klein--Gordon system through the
discrete Schrodinger equation. We show that a parametric driving can not only
destabilize onsite bright solitons, but also stabilize intersite bright
discrete solitons and onsite and intersite dark solitons. Most importantly, we
show that there is a range of values of the driving coefficient for which dark
solitons are stable, for any value of the coupling constant, i.e. oscillatory
instabilities are totally suppressed. Stability windows of all the fundamental
solitons are presented and approximations to the onset of instability are
derived using perturbation theory, with accompanying numerical results.
Numerical integrations of the Klein--Gordon equation are performed, confirming
the relevance of our analysis
Metastability and the Casimir Effect in Micromechanical Systems
Electrostatic and Casimir interactions limit the range of positional
stability of electrostatically-actuated or capacitively-coupled mechanical
devices. We investigate this range experimentally for a generic system
consisting of a doubly-clamped Au suspended beam, capacitively-coupled to an
adjacent stationary electrode. The mechanical properties of the beam, both in
the linear and nonlinear regimes, are monitored as the attractive forces are
increased to the point of instability. There "pull-in" occurs, resulting in
permanent adhesion between the electrodes. We investigate, experimentally and
theoretically, the position-dependent lifetimes of the free state (existing
prior to pull-in). We find that the data cannot be accounted for by simple
theory; the discrepancy may be reflective of internal structural instabilities
within the metal electrodes.Comment: RevTex, 4 pages, 4 figure
Spintronics of a Nanoelectromechanical Shuttle
We consider effects of the spin degree of freedom on the nanomechanics of a
single-electron transistor (SET) containing a nanometer-sized metallic cluster
suspended between two magnetic leads. It is shown that in such a
nanoelectromechanical SET(NEM-SET) the onset of an electromechanical
instability leading to cluster vibrations and "shuttle" transport of electrons
between the leads can be controlled by an external magnetic field. Different
stable regimes of this spintronic NEM-SET operation are analyzed. Two different
scenarios for the onset of shuttle vibrations are found.Comment: 4 pages, 3 figure
High-Frequency Nanofluidics: An Experimental Study using Nanomechanical Resonators
Here we apply nanomechanical resonators to the study of oscillatory fluid
dynamics. A high-resonance-frequency nanomechanical resonator generates a
rapidly oscillating flow in a surrounding gaseous environment; the nature of
the flow is studied through the flow-resonator interaction. Over the broad
frequency and pressure range explored, we observe signs of a transition from
Newtonian to non-Newtonian flow at , where is a
properly defined fluid relaxation time. The obtained experimental data appears
to be in close quantitative agreement with a theory that predicts purely
elastic fluid response as
Quantum Shuttle Phenomena in a Nanoelectromechanical Single-Electron Transistor
An analytical analysis of quantum shuttle phenomena in a
nanoelectromechanical single-electron transistor has been performed in the
realistic case, when the electron tunnelling length is much greater than the
amplitude of the zero point oscillations of the central island. It is shown
that when the dissipation is below a certain threshold value, the vibrational
ground state of the central island is unstable. The steady-state into which
this instability develops is studied. It is found that if the electric field
between the leads is much greater than a characteristic value , the quasiclassical shuttle picture is recovered, while if a new quantum regime of shuttle vibrations occurs. We show
that in the latter regime small quantum fluctuations result in large (i.e.
finite in the limit ) shuttle vibrations.Comment: 5 pages, 1 figur
Improving the Coherence Time of Superconducting Coplanar Resonators
The quality factor and energy decay time of superconducting resonators have
been measured as a function of material, geometry, and magnetic field. Once the
dissipation of trapped magnetic vortices is minimized, we identify surface
two-level states (TLS) as an important decay mechanism. A wide gap between the
center conductor and the ground plane, as well as use of the superconductor Re
instead of Al, are shown to decrease loss. We also demonstrate that classical
measurements of resonator quality factor at low excitation power are consistent
with single-photon decay time measured using qubit-resonator swap experiments.Comment: 3 pages, 4 figures for the main paper; total 5 pages, 6 figures
including supplementary material. Submitted to Applied Physics Letter
Quantum electromechanics: Quantum tunneling near resonance and qubits from buckling nanobars
Analyzing recent experimental results, we find similar behaviors and a deep
analogy between three-junction superconducting qubits and suspended carbon
nanotubes. When these different systems are ac-driven near their resonances,
the resonance single-peak, observed at weak driving, splits into two sub-peaks
(Fig. 1) when the driving increases. This unusual behavior can be explained by
considering quantum tunneling in a double well potential for both systems.
Inspired by these experiments, we propose a mechanical qubit based on buckling
nanobars--a NEMS so small as to be quantum coherent.
To establish buckling nanobars as legitimate candidates for qubits, we
calculate the effective buckling potential that produces the two-level system
and identify the tunnel coupling between the two local states. We propose
different designs of nanomechanical qubits and describe how they can be
manipulated. Also, we outline possible decoherence channels and detection
schemes. A comparison between nanobars and well studied superconducting qubits
suggests several future experiments on quantum electromechanics.Comment: 6 pages, 3 figures, 1 tabl
Superconducting Qubits Coupled to Nanoelectromechanical Resonators: An Architecture for Solid-State Quantum Information Processing
We describe the design for a scalable, solid-state
quantum-information-processing architecture based on the integration of
GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which
has the potential for demonstrating a variety of single- and multi-qubit
operations critical to quantum computation. The computational qubits are
eigenstates of large-area, current-biased Josephson junctions, manipulated and
measured using strobed external circuitry. Two or more of these phase qubits
are capacitively coupled to a high-quality-factor piezoelectric
nanoelectromechanical disk resonator, which forms the backbone of our
architecture, and which enables coherent coupling of the qubits. The integrated
system is analogous to one or more few-level atoms (the Josephson junction
qubits) in an electromagnetic cavity (the nanomechanical resonator). However,
unlike existing approaches using atoms in electromagnetic cavities, here we can
individually tune the level spacing of the ``atoms'' and control their
``electromagnetic'' interaction strength. We show theoretically that quantum
states prepared in a Josephson junction can be passed to the nanomechanical
resonator and stored there, and then can be passed back to the original
junction or transferred to another with high fidelity. The resonator can also
be used to produce maximally entangled Bell states between a pair of Josephson
junctions. Many such junction-resonator complexes can assembled in a
hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed
architecture combines desirable features of both solid-state and cavity quantum
electrodynamics approaches, and could make quantum information processing
possible in a scalable, solid-state environment.Comment: 20 pages, 14 separate low-resolution jpeg figure
Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems
We explore the quantum aspects of an elastic bar supported at both ends and
subject to compression. If strain rather than stress is held fixed, the system
remains stable beyond the buckling instability, supporting two potential
minima. The classical equilibrium transverse displacement is analogous to a
Ginsburg-Landau order parameter, with strain playing the role of temperature.
We calculate the quantum fluctuations about the classical value as a function
of strain. Excitation energies and quantum fluctuation amplitudes are compared
for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter
- …