53 research outputs found
A novel thermal detection method based on molecularly imprinted nanoparticles as recognition elements.
Molecularly Imprinted Polymers (MIPs) are synthetic receptors that are able to selectively bind their target molecule and, for this reason, they are currently employed as recognition elements in sensors. In this work, MIP nanoparticles (nanoMIPs) are produced by solid-phase synthesis for a range of templates with different sizes, including a small molecule (biotin), two peptides (one derived from the epithelial growth factor receptor and vancomycin) and a protein (trypsin). NanoMIPs are then dipcoated on the surface of thermocouples that measure the temperature inside a liquid flow cell. Binding of the template to the MIP layer on the sensitive area of the thermocouple tip blocks the heat-flow from the sensor to the liquid, thereby lowering the overall temperature measured by the thermocouple. This is subsequently correlated to the concentration of the template, enabling measurement of target molecules in the low nanomolar regime. The significant improvement in the limit of detection (a magnitude of three orders compared to previously used MIP microparticles) can be attributed to their high affinity, enhanced conductivity and increased surface-to-volume ratio. It is the first time that these nanosized recognition elements are used in combination with thermal detection, and it is the first report on MIP-based thermal sensors for determining protein levels. The developed thermal sensors have a high selectivity, fast measurement time (<5 min), and data analysis is straightforward, which makes it possible to monitor biomolecules in real-time. The set of biomolecules discussed in this manuscript show that it is possible to cover a range of template molecules regardless of their size, demonstrating the general applicability of the biosensor platform. In addition, with its high commercial potential and biocompatibility of the MIP receptor layer, this is an important step towards sensing assays for diagnostic applications that can be used in vivo
Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection
The accurate detection of biological materials has remained at the forefront of scientific research for decades. This includes the detection of molecules, proteins, and bacteria. Biomimetic sensors look to replicate the sensitive and selective mechanisms that are found in biological systems and incorporate these properties into functional sensing platforms. Molecularly imprinted polymers (MIPs) are synthetic receptors that can form high affinity binding sites complementary to the specific analyte of interest. They utilise the shape, size, and functionality to produce sensitive and selective recognition of target analytes. One route of synthesizing MIPs is through electropolymerization, utilising predominantly constant potential methods or cyclic voltammetry. This methodology allows for the formation of a polymer directly onto the surface of a transducer. The thickness, morphology, and topography of the films can be manipulated specifically for each template. Recently, numerous reviews have been published in the production and sensing applications of MIPs; however, there are few reports on the use of electrosynthesized MIPs (eMIPs). The number of publications and citations utilising eMIPs is increasing each year, with a review produced on the topic in 2012. This review will primarily focus on advancements from 2012 in the use of eMIPs in sensing platforms for the detection of biologically relevant materials, including the development of increased polymer layer dimensions for whole bacteria detection and the use of mixed monomer compositions to increase selectivity toward analytes
Thermistors coated with molecularly imprinted nanoparticles for the electrical detection of peptides and proteins
In this communication, molecularly imprinted nanoparticles (nanoMIPs) that are produced by solid-phase synthesis are functionalised onto thermistors via dip-coating. These thermistors are soldered onto a printed-circuit board to facilitate electrical detection. Subsequently, these are inserted into a home-made thermal device that can measure the selective binding of biomolecules to the nanoMIP layer via monitoring the thermal resistance (Rth) at the solid-liquid interface. This thermal analysis technique, referred to as the Heat-Transfer Method, has previously been used for detection of proteins with MIP-based binders. While offering the advantages of low-cost and label free analysis, this method is limited by the high noise on the feedback loop and not being commercially available. These disadvantages can be overcome by the use of thermistors, which offer superior temperature sensitivity compared to thermocouples, and its electrical read-out can be easily integrated into portable devices. To our knowledge, this is the first report where MIPs are directly integrated onto thermistors for detection purposes. Measurements were conducted with an epitope of epidermal growth factor receptor (EGFR) and trypsin, where the electrical resistance was correlated to the biomolecule concentration. For both EGFR and trypsin, an enhanced signal to noise ratio for the electrical measurements was observed compared to previous analysis that was based on thermal resistance. The sensitivity of the sensors in buffered solution was in the nanomolar range, which is compatible with physiologically relevant concentrations. Upon exposure of the nanoMIP for EGFR towards pepsin no significant change in the resistance was yielded, establishing the selectivity of the developed sensor platform. Besides the enhanced sensitivity, the use of thermistors will enable miniaturisation of the device and has potential for in vivo measurements since specified electrochemical measurements are compatible with human use. To highlight the versatility of the nanoMIPs, this work should be extended to a set of biomolecules with various structures, with the possibility of extending this to an array format
Functionalized screen-printed electrodes for the thermal detection of Escherichia coli in dairy products
Accurate and fast on-site detection of harmful microorganisms in food products is a key preventive step to avoid food-borne illness and product recall. In this study, screen-printed electrodes (SPEs) were functionalized via a facile strategy with surface imprinted polymers (SIPs). The SIP-coated SPEs were used in combination with the heat transfer method (HTM) for the real-time detection of Escherichia coli. The sensor was tested in buffer, with a reproducible and sensitive response that attained a limit of detection of 180 CFU/mL. Furthermore, selectivity was assessed by analyzing the sensor's response to C. sakazakii, K. pneumoniae and S. aureus as analogue strains. Finally, the device was successfully used for the detection of E. coli in spiked milk as proof-of-application, requiring no additional sample preparation. These results suggest the proposed thermal biosensor possesses the potential of becoming a tool for routine, on-site monitoring of E. coli in food safety applications
Development of a novel flexible polymer-based biosensor platform for the thermal detection of noradrenaline in aqueous solutions
Molecularly Imprinted Polymers (MIPs) are synthesized for the neurotransmitter noradrenaline with the optimal composition and binding conditions being determined via optical batch rebinding experiments. Next, the obtained MIP polymer particles are mixed within screen-printed inks to produce mass-producible bulk modified MIPs screen-printed electrodes (MIP-SPEs). In this contribution, the supporting surface which the MIP-SPEs are screen-printed upon are explored to deviate from conventional polyester, to polyvinylchloride, tracing paper and household-printing paper. The performance of the MIP-SPEs are measured using the Heat-Transfer Method (HTM), a straightforward and low-cost detection technique based on thermal resistance. At first, the noise on the signal is minimized by adjusting the settings of the temperature feedback loop. Second, the response of the MIP-SPEs to noradrenaline is measured and compared for the different substrate materials. Sensors printed onto paper are considered in further experiments as their response to noradrenaline is the highest and advantageous material properties, including sustainability and flexibility of the material. Subsequently, dose-response curves are determined by simultaneously measuring HTM and Thermal Wave Transport Analysis (TWTA). The latter is a new thermal detection method that relies on the use of thermal waves and has the advantage of a short measurement time (2Â min). With these thermal methods, it is possible to specifically detect noradrenaline in aqueous solutions and quantify it at relevant concentrations. In summary, by combining synthetic receptors with thermal measurement techniques it is possible to develop a portable sensor platform that is capable of low-cost and straightforward detection of biomolecules. Through exploring novel SPE substrates, a system is designed that is flexible and holds potential for the use in commercial biomedical devices and complex sensor architectures
Label-Free Detection of Escherichia coli Based on Thermal Transport through Surface Imprinted Polymers
This work focuses on the development of a label-free biomimetic sensor for the specific and selective detection of bacteria. The platform relies on the rebinding of bacteria to synthetic cell receptors, made by surface imprinting of polyurethane-coated aluminum chips. The heat-transfer resistance (Rth) of these so-called surface imprinted polymers (SIPs) was analyzed in time using the heat-transfer method (HTM). Rebinding of target bacteria to the synthetic receptor led to a measurable increase in thermal resistance at the solid–liquid interface. Escherichia coli and Staphylococcus aureus were used as model organisms for several proof-of-principle experiments, demonstrating the potential of the proposed platform for point-of-care bacterial testing. The results of these experiments indicate that the sensor is able to selectively detect bacterial rebinding to the SIP surface, distinguishing between dead and living E. coli cells on one hand and between Gram-positive and Gram-negative bacteria on the other hand (E. coli and S. aureus). In addition, the sensor was capable of quantifying the number of bacteria in a given sample, enabling detection at relatively low concentrations (104 CFU mL–1 range). As a first proof-of-application, the sensor was exposed to a mixed bacterial solution containing only a small amount (1%) of the target bacteria. The sample was able to detect this trace amount by using a simple gradual enrichment strategy
Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers
This paper introduces a novel bacterial identification assay based on thermal wave analysis through surfaceimprinted polymers (SIPs). Aluminum chips are coated with SIPs, serving as synthetic cell receptors that have been combined previously with the heat-transfer method (HTM) for the selective detection of bacteria. In this work, the concept of bacterial identification is extended toward the detection of nine different bacterial species. In addition, a novel sensing approach, thermal wave transport analysis (TWTA), is introduced, which analyzes the propagation of a thermal wave through a functional interface. The results presented here demonstrate that bacterial rebinding to the SIP layer resulted in a measurable phase shift in the propagated wave, which is most pronounced at a frequency of 0.03 Hz. In this way, the sensor is able to selectively distinguish between the different bacterial species used in this study. Furthermore, a dose−response curve was constructed to determine a limit of detection of 1 × 104 CFU mL−1 , indicating that TWTA is advantageous over HTM in terms of sensitivity and response time. Additionally, the limit of selectivity of the sensor was tested in a mixed bacterial solution, containing the target species in the presence of a 99-fold excess of competitor species. Finally, a first application for the sensor in terms of infection diagnosis is presented, revealing that the platform is able to detect bacteria in clinically relevant concentrations as low as 3 × 104 CFU mL−1 in spiked urine samples
Thermal detection of cardiac biomarkers H-FABP and ST2 using a molecularly imprinted nanoparticle-based multiplex sensor platform
© 2019 American Chemical Society. This manuscript describes the production of Molecularly Imprinted Polymer nanoparticles (nanoMIPs) for the cardiac biomarkers heart-fatty acid binding protein (H-FABP) and ST2 by solid-phase synthesis, and their use as synthetic antibodies in a multiplexed sensing platform. Analysis by Surface Plasmon Resonance (SPR) shows that the affinity of the nanoMIPs is similar to that of commercially available antibodies. The particles are coated onto the surface of thermo-couples and inserted into 3D-printed flow cells of different multiplexed designs. We demonstrate it is possible to selectively detect both cardiac biomarkers within the physiologically relevant range. Furthermore, the developed sensor platform is the first example of a multiplex format of this thermal analysis technique which enables simultaneous measurements of two different compounds with minimal cross selectivity. The format where three thermocouples are positioned in parallel exhibits the highest sensitivity, which is explained by modelling the heat flow distribution with-in the flow cell. This design is used in further experiments and proof-of-application of the sensor platform is provided by measuring spiked fetal bovine serum samples. Due to the high selectivity, short measurement time, and low-cost of this array format, it provides an interesting alternative to traditional immunoassays. The use of nanoMIPs enables a multi-marker strategy, which has the potential to contribute to sustainable healthcare by improving reliability of cardiac biomarker testing
- …