108 research outputs found
The Role of Radioactivities in Astrophysics
I present both a history of radioactivity in astrophysics and an introduction
to the major applications of radioactive abundances to astronomy
Optical and near-IR observations of SN 1998bw
SN 1998bw, especially after the discovery of GRB 030329/SN 2003dh, seems to
be the equivalent of the Rosetta stone for the SN/GRB connection. In this paper
I review optical and near IR observations that have been carried out for this
uncanny object, which has probably confirmed suspicions and ideas originally
formulated in the early seventies of last century.Comment: 9 pages, 7 figures. Invited review to the IAU Colloquium n. 192,
SUPERNOVAE: ten years of SN 1993J, Valencia (Spain
Non-linear screening corrections of stellar nuclear reaction rates and their effects on solar neutrino fluxes
Non-linear electron screening corrections of stellar nuclear fusion rates are
calculated analytically in the framework of the Debye-Huckel model and compared
with the respective ones of Salpeter's weak screening approximation. In typical
solar conditions, the deviation from Salpeter's screening factor is less than
one percent, while for hotter stars such corrections turn out to be of the
order of one percent only over the limits of the Debye-Huckel model. Moreover,
an investigation of the impact of the derived non-linear screening effects on
the solar neutrino fluxes yields insignificant corrections for both the pp and
CNO chain reactions.Comment: To appear in Phys.Rev.
Dynamics of barrier penetration in thermal medium: exact result for inverted harmonic oscillator
Time evolution of quantum tunneling is studied when the tunneling system is
immersed in thermal medium. We analyze in detail the behavior of the system
after integrating out the environment. Exact result for the inverted harmonic
oscillator of the tunneling potential is derived and the barrier penetration
factor is explicitly worked out as a function of time. Quantum mechanical
formula without environment is modifed both by the potential renormalization
effect and by a dynamical factor which may appreciably differ from the
previously obtained one in the time range of 1/(curvature at the top of
potential barrier).Comment: 30 pages, LATEX file with 11 PS figure
Cosmic Rays during BBN as Origin of Lithium Problem
There may be non-thermal cosmic rays during big-bang nucleosynthesis (BBN)
epoch (dubbed as BBNCRs). This paper investigated whether such BBNCRs can be
the origin of Lithium problem or not. It can be expected that BBNCRs flux will
be small in order to keep the success of standard BBN (SBBN). With favorable
assumptions on the BBNCR spectrum between 0.09 -- 4 MeV, our numerical
calculation showed that extra contributions from BBNCRs can account for the
Li abundance successfully. However Li abundance is only lifted an order
of magnitude, which is still much lower than the observed value. As the
deuteron abundance is very sensitive to the spectrum choice of BBNCRs, the
allowed parameter space for the spectrum is strictly constrained. We should
emphasize that the acceleration mechanism for BBNCRs in the early universe is
still an open question. For example, strong turbulent magnetic field is
probably the solution to the problem. Whether such a mechanism can provide the
required spectrum deserves further studies.Comment: 34 pages, 21 figures, published versio
Thorough analysis of input physics in CESAM and CLES codes
This contribution is not about the quality of the agreement between stellar
models computed by CESAM and CLES codes, but more interesting, on what
ESTA-Task~1 run has taught us about these codes and about the input physics
they use. We also quantify the effects of different implementations of the same
physics on the seismic properties of the stellar models, that in fact is the
main aim of ESTA experiments.Comment: 11 pages, 12 fig. Accepted for publication in ApSS CoRoT/ESTA Volu
ASTEC -- the Aarhus STellar Evolution Code
The Aarhus code is the result of a long development, starting in 1974, and
still ongoing. A novel feature is the integration of the computation of
adiabatic oscillations for specified models as part of the code. It offers
substantial flexibility in terms of microphysics and has been carefully tested
for the computation of solar models. However, considerable development is still
required in the treatment of nuclear reactions, diffusion and convective
mixing.Comment: Astrophys. Space Sci, in the pres
Recent Advances in Modeling Stellar Interiors
Advances in stellar interior modeling are being driven by new data from
large-scale surveys and high-precision photometric and spectroscopic
observations. Here we focus on single stars in normal evolutionary phases; we
will not discuss the many advances in modeling star formation, interacting
binaries, supernovae, or neutron stars. We review briefly: 1) updates to input
physics of stellar models; 2) progress in two and three-dimensional evolution
and hydrodynamic models; 3) insights from oscillation data used to infer
stellar interior structure and validate model predictions (asteroseismology).
We close by highlighting a few outstanding problems, e.g., the driving
mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant
eruptions seen in luminous blue variables such as eta Car and P Cyg, and the
solar abundance problem.Comment: Proceedings for invited talk at conference High Energy Density
Laboratory Astrophysics 2010, Caltech, March 2010, submitted for special
issue of Astrophysics and Space Science; 7 pages; 5 figure
Prospects for Studies of Stellar Evolution and Stellar Death in the JWST Era
I review the prospects for studies of the advanced evolutionary stages of
low-, intermediate- and high-mass stars by the JWST and concurrent facilities,
with particular emphasis on how they may help elucidate the dominant
contributors to the interstellar dust component of galaxies. Observations
extending from the mid-infrared to the submillimeter can help quantify the
heavy element and dust species inputs to galaxies from AGB stars. JWST's MIRI
mid-infrared instrument will be so sensitive that observations of the dust
emission from individual intergalactic AGB stars and planetary nebulae in the
Virgo Cluster will be feasible. The Herschel Space Observatory will enable the
last largely unexplored spectral region, the far-IR to the submillimeter, to be
surveyed for new lines and dust features, while SOFIA will cover the wavelength
gap between JWST and Herschel, a spectral region containing important fine
structure lines, together with key water-ice and crystalline silicate bands.
Spitzer has significantly increased the number of Type II supernovae that have
been surveyed for early-epoch dust formation but reliable quantification of the
dust contributions from massive star supernovae of Type II, Type Ib and Type Ic
to low- and high-redshift galaxies should come from JWST MIRI observations,
which will be able to probe a volume over 1000 times larger than Spitzer.Comment: 24 pages, 19 figures. To appear in `Astrophysics in the Next Decade:
JWST and Concurrent Facilities' (JWST Conference Proceedings), edited by H.
A. Thronson, M. Stiavelli and A. G. G. M. Tielens; Springer Series:
Astrophysics and Space Science Proceeding
- …