65 research outputs found
Quantum phase transition in the Plaquette lattice with anisotropic spin exchange
I study the influence of anisotropic spin exchange on a quantum phase
transition in the Plaquette lattice driven by the purely quantum effect of
singlet formation. I study the influence of i) a Dzyaloshinskii-Moriya exchange
and ii) four spin exchange on the transition point by evaluating spin--spin
correlations and the spin gap with exact diagonalization. The results point to
a stabilization of the Neel-like long range order when the
Dzyaloshinskii-Moriya exchange is added, whereas the four-spin exchange might
stabilize the singlet order as well as the Neel-like order depending on its
strength.Comment: LaTeX article with 4 pages and 3 figures, prepared with material for
the ICM 200
Two-dimensional tetramer-cuprate Na5RbCu4(AsO4)4Cl2: phase transitions and AFMorder as seen by 87Rb NMR
We report the Rb nuclear magnetic resonance (NMR) results in a recently
synthesized Na5RbCu4(AsO4)Cl2. This complex novel two-dimensional (2D) cuprate
is an unique magnetic material, which contains layers of coupled Cu4O4
tetramers. In zero applied magnetic field, it orders antiferromagnetically via
a second-order low-entropy phase transition at TN = 15(1) K. We characterise
the ordered state by 87Rb NMR, and suggest for it a noncollinear rather than
collinear arrangement of spins. We discuss the properties of Rb nuclear site
and point out the new structural phase transition(s) around 74 K and 110 K.Comment: 2 pages, 2 figures, Proceedings of SCES'05, Vienna 200
Vorticity, phase stiffness and the cuprate phase diagram
We review results obtained from vortex-Nernst experiments in cuprates.
Evidence for a loss of phase coherence at the Meissner transition is
derived from vortex-like excitations that persist to high temperature. Below
, the Nersnt signal provides a determination of the upper critical
field vs. doping . Implications for the cuprate phase diagram are
discussed.Comment: 6 pages, 8 figures, Plenary talk of the 7th International Conference
on Materials and Mechanisms of Superconductivity and High Temperature
Superconductors. To appear in Physica C, the proceeding of M2S-HTSC-VI
Nernst Effect in Electron-Doped PrCeCuO
The Nernst effect of PrCeCuO (x=0.13, 0.15, and 0.17) has
been measured on thin film samples between 5-120 K and 0-14 T. In comparison to
recent measurements on hole-doped cuprates that showed an anomalously large
Nernst effect above the resistive T and H
\cite{xu,wang1,wang2,capan}, we find a normal Nernst effect above T and
H for all dopings. The lack of an anomalous Nernst effect in the
electron-doped compounds supports the models that explain this effect in terms
of amplitude and phase fluctuations in the hole-doped cuprates. In addition,
the H(T) determined from the Nernst effect shows a conventional behavior
for all dopings. The energy gap determined from H(0) decreases as the
system goes from under-doping to over-dopingin agreement with the recent
tunnelling experiments
Magnetic Properties of the Novel Low-Dimensional Cuprate Na5RbCu4(AsO4)4Cl2
The magnetic properties of a new compound, Na5RbCu4(AsO4)4Cl2 are reported.
The material has a layered structure comprised of square Cu4O4 tetramers. The
Cu ions are divalent and the system behaves as a low-dimensional S=1/2
antiferromagnet. Spin exchange in Na5RbCu4(AsO4)4Cl2 appears to be
quasi-two-dimensional and non-frustrated. Measurements of the bulk magnetic
susceptibility and heat capacity are consistent with low-dimensional magnetism.
The compound has an interesting, low-entropy, magnetic transition at T = 17 K.Comment: 4 pages, 5 figure
Thermal Hall conductivity of marginal Fermi liquids subject to out-of plane impurities in high- cuprates
The effect of out-of-plane impurities on the thermal Hall conductivity
of in-plane marginal-Fermi-liquid (MFL) quasiparticles in
high- cuprates is examined by following the work on electrical Hall
conductivity by Varma and Abraham [Phys. Rev. Lett. 86, 4652
(2001)]. It is shown that the effective Lorentz force exerted by these
impurities is a weak function of energies of the MFL quasiparticles, resulting
in nearly the same temperature dependence of and ,
indicative of obedience of the Wiedemann-Franz law. The inconsistency of the
theoretical result with the experimental one is speculated to be the
consequence of the different amounts of out-of-plane impurities in the two
YBaCuO samples used for the and measurements.Comment: 5 pages, 2 eps figures; final versio
The onset of the vortex-like Nernst signal above Tc in La_{2-x}Sr_xCuO_4 and Bi_2Sr_{2-y}La_yCuO_6
The diffusion of vortices down a thermal gradient produces a Josephson signal
which is detected as the vortex Nernst effect. In a recent report, Xu et al.,
Nature 406, 486 (2000), an enhanced Nernst signal identified with vortex-like
excitations was observed in a series of La_{2-x}Sr_xCuO_4 (LSCO) crystals at
temperatures 50-100 K above T_c. To pin down the onset temperature T_{\nu} of
the vortex-like signal in the lightly doped regime (0.03 < x < 0.07), we have
re-analyzed in detail the carrier contribution to the Nernst signal. By
supplementing new Nernst measurements with thermopower and Hall-angle data, we
isolate the off-diagonal Peltier conductivity \alpha_{xy} and show that its
profile provides an objective determination of T_{\nu}. With the new results,
we revise the phase diagram for the fluctuation regime in LSCO to accomodate
the lightly doped regime. In the cuprate Bi_2Sr_{2-y}La_yCuO_6, we find that
the carrier contribution is virtually negligible for y in the range 0.4-0.6.
The evidence for an extended temperature interval with vortex-like excitations
is even stronger in this system. Finally, we discuss how T_{\nu} relates to the
pseudogap temperature T* and the implications of strong fluctuations between
the pseudogap state and the d-wave superconducting state.Comment: 10 pages, 10 figure
Combination Rules, Charge Symmetry, and Hall Effect in Cuprates
The rule relating the observed Hall coefficient to the spin and charge
responses of the uniform doped Mott insulator is derived. It is essential to
include the contribution of holon and spinon three-current correlations to the
effective action of the gauge field. In the vicinity of the Mott insulating
point the Hall coefficient is holon dominated and weakly temperature dependent.
In the vicinity of a point of charge conjugation symmetry the holon
contribution to the observed Hall coefficient is small: the Hall coefficient
follows the temperature dependence of the diamagnetic susceptibility with a
sign determined by the Fermi surface shape. NOTE: document prepared using
REVTEX. (3 Figs, not included, available on request from: [email protected])Comment: 8 page
Entropy of vortex cores on the border of the superconductor-to-insulator transition in an underdoped cuprate
We present a study of Nernst effect in underdoped in
magnetic fields as high as 28T. At high fields, a sizeable Nernst signal was
found to persist in presence of a field-induced non-metallic resistivity. By
simultaneously measuring resistivity and the Nernst coefficient, we extract the
entropy of vortex cores in the vicinity of this field-induced
superconductor-insulator transition. Moreover, the temperature dependence of
the thermo-electric Hall angle provides strong constraints on the possible
origins of the finite Nernst signal above , as recently discovered by Xu
et al.Comment: 5 Pages inculding 4 figure
- …