62 research outputs found

    Oscillator Strength of Metallic Carbon Nanotubes

    Full text link
    Based on the tight binding method with hopping integral between the nearest-neighbor atoms, an oscillator strength \int_0^{\infty} \d \omega {\rm Re} \sigma (\omega) is discussed for armchair and metallic zigzag carbon nanotubes. The formulae of the oscillator strength are derived for both types of nanotubes and are compared with the result obtained by a linear chain model. In addition, the doping dependence is investigated in the absence of Coulomb interaction. It is shown that the oscillator strength of each carbon nanotube shows qualitatively the same doping dependence, but the fine structure is different due to it's own peculiar band structure. Some relations independent of the radius of the tube are derived, and a useful formula for determining the amount of doping is proposed.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jpn. at June 30, 200

    Enhancement of the Electron Spin Resonance of Single-Walled Carbon Nanotubes by Oxygen Removal

    Full text link
    We have observed a nearly fourfold increase in the electron spin resonance (ESR) signal from an ensemble of single-walled carbon nanotubes (SWCNTs) due to oxygen desorption. By performing temperature-dependent ESR spectroscopy both before and after thermal annealing, we found that the ESR in SWCNTs can be reversibly altered via the molecular oxygen content in the samples. Independent of the presence of adsorbed oxygen, a Curie-law (spin susceptibility ∝1/T\propto 1/T) is seen from ∌\sim4 K to 300 K, indicating that the probed spins are finite-level species. For both the pre-annealed and post-annealed sample conditions, the ESR linewidth decreased as the temperature was increased, a phenomenon we identify as motional narrowing. From the temperature dependence of the linewidth, we extracted an estimate of the intertube hopping frequency; for both sample conditions, we found this hopping frequency to be ∌\sim100 GHz. Since the spin hopping frequency changes only slightly when oxygen is desorbed, we conclude that only the spin susceptibility, not spin transport, is affected by the presence of physisorbed molecular oxygen in SWCNT ensembles. Surprisingly, no linewidth change is observed when the amount of oxygen in the SWCNT sample is altered, contrary to other carbonaceous systems and certain 1D conducting polymers. We hypothesize that physisorbed molecular oxygen acts as an acceptor (pp-type), compensating the donor-like (nn-type) defects that are responsible for the ESR signal in bulk SWCNTs.Comment: 14 pages, 7 figure

    Quantification of heavy metal resistant bacteria adjacent to a wastewater treatment plant

    No full text
    The objective of this study was to characterize metal resistant bacteria around a wastewater treatment plant. Sediment samples were collected from the Town Branch wastewater treatment plant near Lexington Kentucky, both where the effluent discharges and approximately 10m upstream. Plate counts for heterotrophic bacteria resistant to zinc, cobalt and cadmium were performed. Preliminary results suggest that there are more bacteria resistant to zinc than either cadmium or cobalt at both sampling sites. However, no differences were found between sites. While requiring confirmation, the latter suggests that wastewater treatment plants may not be a source of heavy metal resistant bacteria
    • 

    corecore