3,759 research outputs found
Phase diagram of the one dimensional Hubbard-Holstein Model at 1/2 and 1/4 filling
The Hubbard-Holstein model is one of the simplest to incorporate both
electron-electron and electron-phonon interactions. In one dimension at half
filling the Holstein electron-phonon coupling promotes onsite pairs of
electrons and a Peierls charge density wave while the Hubbard onsite Coulomb
repulsion U promotes antiferromagnetic correlations and a Mott insulating
state. Recent numerical studies have found a possible third intermediate phase
between Peierls and Mott states. From direct calculations of charge and spin
susceptibilities, we show that (i) As the electron-phonon coupling is
increased, first a spin gap opens, followed by the Peierls transition. Between
these two transitions the metallic intermediate phase has a spin gap, no charge
gap, and properties similar to the negative-U Hubbard model. (ii) The
transitions between Mott/intermediate and intermediate/Peierls states are of
the Kosterlitz-Thouless form. (iii) For larger U the two transitions merge at a
tritical point into a single first order Mott/Peierls transition. In addition
we show that an intermediate phase also occurs in the quarter-filled model.Comment: 10 pages, 10 eps figure
Herbicide Movement and Dissipation at Four Midwestern Sites
This study was conducted to evaluate atrazine (2âchloroâ4âethylaminoâ6âisopropylâ1, 3, 5âtriazine) and alachlor (2âchIoroâNâ(methoxymethyl)acetamide) dissipation and movement to shallow aquifers across the Northern Sand Plains region of the United States. Sites were located at Minnesota on a Zimmerman fine sand, North Dakota on Hecla sandy loam, South Dakota on a Brandt silty clay loam, and Wisconsin on a Sparta sand. Herbicide concentrations were determined in soil samples taken to 90 cm four times during the growing season and water samples taken from the top one m of aquifer at least once every three months. Herbicides were detected to a depth of 30 cm in Sparta sand and 90 cm in all other soils. Some aquifer samples from each site contained atrazine with the highest concentration in the aquifer beneath the Sparta sand (1.28 ÎŒg Lâ1). Alachlor was detected only once in the aquifer at the SD site. The time to 50% atrazine dissipation (DT50) in the top 15 cm of soil averaged about 21 d in Sparta and Zimmerman sands and more than 45 d for Brandt and Hecla soils. Atrazine DT50 was correlated positively with % clay and organic carbon (OC), and negatively with % fine sand. Alachlor DT50 ranged from 12 to 32 d for Zimmerman and Brandt soils, respectively, and was correlated negatively with % clay and OC and positively with % sand
Estimated South Dakota Land Use Change from 2006 to 2012
Grasslands play a key role in providing wildlife habitat and recreation, as well as in range and pasture livestock production systems by producing high quality animal protein for human consumption. Croplands provide high quality grains for human consumption, coarse grains for ethanol production, and along with forages, feed for confined livestock production systems. These livestock systems also produce high quality animal protein for human consumption. Both land use systems play important roles in a wide range of societal issues facing South Dakota including economic productivity and development, water quality and quantity, health of rural communities, urban development, and additional aspects of quality-of-life long associated with the state. The purpose of this study was to estimate land use changes in South Dakota from 2006 to 2012. Estimates of land use changes were calculated based on proportions of visually observed land use using high resolution imagery (\u3c 2-m resolution) at the same 14,400 sampling points in the years 2006 and 2012. Between 2006 and 2012, the estimated grassland losses were 1,837,100 acres (±21,100). Grassland losses resulted in increased acres devoted to cropland (1,439,500 acres ±15,600), roads + buildings (nonagricultural purposes, 27,400 acres ±110), wetlands + forest (habitat, 126,800 acres ±690), and open water (243,300 acres ±860). The consequences of changes in land use in South Dakota may impact a wide range of stakeholder and interest groups, as well as society in general
Finite-temperature phase transitions in quasi-one-dimensional molecular conductors
Phase transitions in 1/4-filled quasi-one-dimensional molecular conductors
are studied theoretically on the basis of extended Hubbard chains including
electron-lattice interactions coupled by interchain Coulomb repulsion. We apply
the numerical quantum transfer-matrix method to an effective one-dimensional
model, treating the interchain term within mean-field approximation.
Finite-temperature properties are investigated for the charge ordering, the
"dimer Mott" transition (bond dimerization), and the spin-Peierls transition
(bond tetramerization). A coexistent state of charge order and bond
dimerization exhibiting dielectricity is predicted in a certain parameter
range, even when intrinsic dimerization is absent.Comment: to be published in J. Phys. Soc. Jpn., Vol. 76 (2007) No. 1 (5 pages,
4 figures); typo correcte
Exploring the randomness of Directed Acyclic Networks
The feed-forward relationship naturally observed in time-dependent processes
and in a diverse number of real systems -such as some food-webs and electronic
and neural wiring- can be described in terms of so-called directed acyclic
graphs (DAGs). An important ingredient of the analysis of such networks is a
proper comparison of their observed architecture against an ensemble of
randomized graphs, thereby quantifying the {\em randomness} of the real systems
with respect to suitable null models. This approximation is particularly
relevant when the finite size and/or large connectivity of real systems make
inadequate a comparison with the predictions obtained from the so-called {\em
configuration model}. In this paper we analyze four methods of DAG
randomization as defined by the desired combination of topological invariants
(directed and undirected degree sequence and component distributions) aimed to
be preserved. A highly ordered DAG, called \textit{snake}-graph and a
Erd\:os-R\'enyi DAG were used to validate the performance of the algorithms.
Finally, three real case studies, namely, the \textit{C. elegans} cell lineage
network, a PhD student-advisor network and the Milgram's citation network were
analyzed using each randomization method. Results show how the interpretation
of degree-degree relations in DAGs respect to their randomized ensembles depend
on the topological invariants imposed. In general, real DAGs provide disordered
values, lower than the expected by chance when the directedness of the links is
not preserved in the randomization process. Conversely, if the direction of the
links is conserved throughout the randomization process, disorder indicators
are close to the obtained from the null-model ensemble, although some
deviations are observed.Comment: 13 pages, 5 figures and 5 table
The Influence of Strata on the Nutrient Recycling within a Tropical Certified Organic Coffee Production System
In tropical Bolivia coffee plantations, the plant community can be separated into high (trees), middle (coffee), and low (weed) strata. Understanding the importance of each stratum is critical for improving the sustainability of the system. The objective of this study was to determine the importance of strata on nutrient recycling. Litter falls from the upper and middle strata were collected monthly using cone-shaped traps and divided by species into leaves, branches, flowers, and fruits. Dry biomass additions to the soil from high and middle strata totaled 12,655âkg (haâyr)â1 annually. About 76% of the biomass was provided by plants of the genus Inga (I. adenophylla and I. oerstediana). The middle stratum (Coffea arabica L.) provided 24% litterfall biomass. This stratum also produced 1,800âkg coffee bean per ha (12% moisture) which sold for $2.94âkgâ1. In the lower stratum, Oxalis mollissima returned 36âkg N haâ1, while Solanum nodiflorum returned 49âkg K haâ1, and Urticasp. returned 18âkg Ca haâ1. The nutrients recycled through plants in three strata exceeded the amount of nutrients removed in green coffee beans
Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model
The influence of intrinsic channel noise on the spontaneous spiking activity
of poisoned excitable membrane patches is studied by use of a stochastic
generalization of the Hodgkin-Huxley model. Internal noise stemming from the
stochastic dynamics of individual ion channels is known to affect the
collective properties of the whole ion channel cluster. For example, there
exists an optimal size of the membrane patch for which the internal noise alone
causes a regular spontaneous generation of action potentials. In addition to
varying the size of ion channel clusters, living organisms may adapt the
densities of ion channels in order to optimally regulate the spontaneous
spiking activity. The influence of channel block on the excitability of a
membrane patch of certain size is twofold: First, a variation of ion channel
densities primarily yields a change of the conductance level. Second, a
down-regulation of working ion channels always increases the channel noise.
While the former effect dominates in the case of sodium channel block resulting
in a reduced spiking activity, the latter enhances the generation of
spontaneous action potentials in the case of a tailored potassium channel
blocking. Moreover, by blocking some portion of either potassium or sodium ion
channels, it is possible to either increase or to decrease the regularity of
the spike train.Comment: 10 pages, 3 figures, published 200
Vegetation phenology as a key driver for fire occurrence in the UK and comparable humid temperate regions
Background Fire activity in the UK and comparable regions of northwest Europe is generally out of phase with peak fire weather conditions. Aims Here, we assess the potential effect of phenology on fire occurrence patterns for the UK. Methods We examined fire occurrence and vegetation phenology in the UK for 2012â2023, mapped onto the main fire-affected vegetation cover types within distinct precipitation regions, allowing the fire occurrence for fuels in different phenological phases to be explored across distinct âfuelâ types and regions. Key results The UKâs fire regime is characterised by burning in semi-natural grasslands and evergreen dwarf shrub ecosystems in early spring when vegetation is still dormant. During the high-greenness phase in late spring and summer, fire activity is reduced by a factor of 5â6 despite typically elevated fire weather conditions within that period. Conclusions and implications Semi-natural vegetation in the UK is very resistant to burning during the high-greenness phase. However, this âfire barrierâ is diminished during severe drought episodes, which are predicted to become more extreme in the coming decades. Incorporating phenology information into models therefore has great potential for improving future fire danger and behaviour predictions in the UK and comparable humid temperate regions
Charge-order transition in the extended Hubbard model on a two-leg ladder
We investigate the charge-order transition at zero temperature in a two-leg
Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the
Density Matrix Renormalization Group technique. We consider electron densities
between quarter and half filling. For quarter filling and U=8t, we find
evidence for a continuous phase transition between a homogeneous state at small
V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge
order at large V. This transition to a checkerboard charge-ordered state
remains present at all larger fillings, but becomes discontinuous at
sufficiently large filling. We discuss the influence of U/t on the transition
and estimate the position of the tricritical points.Comment: 4 pages, 5 figs, minor changes, accepted for publication in PRB R
Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems
Voltage-dependent ion channels determine the electric properties of axonal
cell membranes. They not only allow the passage of ions through the cell
membrane but also contribute to an additional charging of the cell membrane
resulting in the so-called capacitance loading. The switching of the channel
gates between an open and a closed configuration is intrinsically related to
the movement of gating charge within the cell membrane. At the beginning of an
action potential the transient gating current is opposite to the direction of
the current of sodium ions through the membrane. Therefore, the excitability is
expected to become reduced due to the influence of a gating current. Our
stochastic Hodgkin-Huxley like modeling takes into account both the channel
noise -- i.e. the fluctuations of the number of open ion channels -- and the
capacitance fluctuations that result from the dynamics of the gating charge. We
investigate the spiking dynamics of membrane patches of variable size and
analyze the statistics of the spontaneous spiking. As a main result, we find
that the gating currents yield a drastic reduction of the spontaneous spiking
rate for sufficiently large ion channel clusters. Consequently, this
demonstrates a prominent mechanism for channel noise reduction.Comment: 18 page
- âŠ