429 research outputs found
Verification of Magnitude and Phase Responses in Fixed-Point Digital Filters
In the digital signal processing (DSP) area, one of the most important tasks
is digital filter design. Currently, this procedure is performed with the aid
of computational tools, which generally assume filter coefficients represented
with floating-point arithmetic. Nonetheless, during the implementation phase,
which is often done in digital signal processors or field programmable gate
arrays, the representation of the obtained coefficients can be carried out
through integer or fixed-point arithmetic, which often results in unexpected
behavior or even unstable filters. The present work addresses this issue and
proposes a verification methodology based on the digital-system verifier
(DSVerifier), with the goal of checking fixed-point digital filters w.r.t.
implementation aspects. In particular, DSVerifier checks whether the number of
bits used in coefficient representation will result in a filter with the same
features specified during the design phase. Experimental results show that
errors regarding frequency response and overflow are likely to be identified
with the proposed methodology, which thus improves overall system's
reliability
An insight into polarization states of solid-state organic lasers
The polarization states of lasers are crucial issues both for practical
applications and fundamental research. In general, they depend in a combined
manner on the properties of the gain material and on the structure of the
electromagnetic modes. In this paper, we address this issue in the case of
solid-state organic lasers, a technology which enables to vary independently
gain and mode properties. Different kinds of resonators are investigated:
in-plane micro-resonators with Fabry-Perot, square, pentagon, stadium, disk,
and kite shapes, and external vertical resonators. The degree of polarization P
is measured in each case. It is shown that although TE modes prevail generally
(P>0), kite-shaped micro-laser generates negative values for P, i.e. a flip of
the dominant polarization which becomes mostly TM polarized. We at last
investigated two degrees of freedom that are available to tailor the
polarization of organic lasers, in addition to the pump polarization and the
resonator geometry: upon using resonant energy transfer (RET) or upon pumping
the laser dye to an higher excited state. We then demonstrate that
significantly lower P factors can be obtained.Comment: 12 pages, 12 figure
Reconstruction of seasonal temperature variability in the tropical Pacific Ocean from the shell of the scallop, <i>Comptopallium radula</i>
International audienceWe investigated the oxygen isotope composition (d18O) of shell striae from juvenile Comptopallium radula (Mollusca; Pectinidae) specimens collected live in New Caledonia. Bottom-water temperature and salinity were monitored in-situ throughout the study period. External shell striae form with a 2-day periodicity in this scallop, making it possible to estimate the date of precipitation for each calcite sample collected along a growth transect. The oxygen isotope composition of shell calcite (d18Oshell calcite) measured at almost weekly resolution on calcite accreted between August 2002 and July 2003 accurately tracks bottom-water temperatures. A new empirical paleotemperature equation for this scallop species relates temperature and d18Oshell calcite: t(°C)=20.00(+/-0.61)-3.66(+/-0.39)x(d18Oshell calcite VPDB -d18Owater VSMOW) The mean absolute accuracy of temperature estimated using this equation is 1.0 °C at temperatures between 20 and 30 °C. Uncertainties regarding the precise timing of CaCO3 deposition and the actual variations in d18Owater at our study sites probably contribute to this error. Comparison with a previously published empirical paleotemperature equation indicates that C. radula calcite is enriched in 18O by ~0.7Ⱐrelative to equilibrium. Given the direction of this offset and the lack of correlation between shell growth rate and d18Oshell calcite, this disequilibrium is unlikely to be related to kinetic isotope effects. We suggest that this enrichment reflects (1) a relatively low pH in the scallop's marginal extrapallial fluid (EPF), (2) an isotopic signature of the EPF different from that of seawater, or (3) Rayleigh fractionation during the biocalcification process. Relative changes in d18Oshell calcite reflect seawater temperature variability at this location and we suggest that the shell of C. radula may be useful as an archive of past seawater temperatures
Metathesis of Fatty Acid Ester Derivatives in 1,1-Dialkyl and 1,2,3-Trialkyl Imidazolium Type Ionic Liquids
The self-metathesis of methyl oleate and methyl ricinoleate was carried out in the presence of ruthenium alkylidene catalysts 1â4 in [bmim] and [bdmim][X] type ionic liquids (RTILs) (X = PF6â, BF4â and NTf2â) using the gas chromatographic technique. Best catalytic performance was obtained in [bdmim][X] type ionic liquids when compared with [bmim][X] type ionic liquids. Catalyst recycling studies were also carried out in the room temperature ionic liquids (RTILs) with catalysts 1â4 in order to explore their possible industrial application
A Novel Duplication Based Countermeasure To Statistical Ineffective Fault Analysis
The Statistical Ineffective Fault Analysis, SIFA, is a recent addition to the family of fault based cryptanalysis techniques. SIFA based attack is shown to be formidable and is able to bypass virtually all the conventional fault attack countermeasures. Reported countermeasures to SIFA incur overheads of the order of at least thrice the unprotected cipher. We propose a novel countermeasure that reduces the overhead (compared to all existing countermeasures) as we rely on a simple duplication based technique. In essence, our countermeasure eliminates the observation that enables the attacker to perform SIFA. The core idea we use here is to choose the encoding for the state bits randomly. In this way, each bit of the state is free from statistical bias, which renders SIFA unusable. Our approach protects against stuck-at faults and also does not rely on any side channel countermeasure. We show the effectiveness of the countermeasure through an open source gate-level fault attack simulation tool. Our approach is probably the simplest and the most cost effective
Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study)
Purpose: Severely ill patients affected by coronavirus disease 2019 (COVID-19) develop circulatory failure. We aimed to report patterns of left and right ventricular dysfunction in the first echocardiography following admission to intensive care unit (ICU). Methods: Retrospective, descriptive study that collected echocardiographic and clinical information from severely ill COVID-19 patients admitted to 14 ICUs in 8 countries. Patients admitted to ICU who received at least one echocardiography between 1st February 2020 and 30th June 2021 were included. Clinical and echocardiographic data were uploaded using a secured web-based electronic database (REDCap). Results: Six hundred and seventy-seven patients were included and the first echo was performed 2 [1, 4] days after ICU admission. The median age was 65 [56, 73] years, and 71% were male. Left ventricle (LV) and/or right ventricle (RV) systolic dysfunction were found in 234 (34.5%) patients. 149 (22%) patients had LV systolic dysfunction (with or without RV dysfunction) without LV dilatation and no elevation in filling pressure. 152 (22.5%) had RV systolic dysfunction. In 517 patients with information on both paradoxical septal motion and quantitative RV size, 90 (17.4%) had acute cor pulmonale (ACP). ACP was associated with mechanical ventilation (OR > 4), pulmonary embolism (OR > 5) and increased PaCO2. Exploratory analyses showed that patients with ACP and older age were more likely to die in hospital (including ICU). Conclusion: Almost one-third of this cohort of critically ill COVID-19 patients exhibited abnormal LV and/or RV systolic function in their first echocardiography assessment. While LV systolic dysfunction appears similar to septic cardiomyopathy, RV systolic dysfunction was related to pressure overload due to positive pressure ventilation, hypercapnia and pulmonary embolism. ACP and age seemed to be associated with mortality in this cohort
Bayesian inversion of synthetic AVO data to assess fluid and shale content in sand-shale media
Reservoir characterization of sand-shale sequences has always challenged geoscientists due to the presence of anisotropy in the form of shale lenses or shale layers. Water saturation and volume of shale are among the fundamental reservoir properties of interest for sand-shale intervals, and relate to the amount of fluid content and accumulating potentials of such media. This paper suggests an integrated workflow using synthetic data for the characterization of shaley-sand media based on anisotropic rock physics (T-matrix approximation) and seismic reflectivity modelling. A Bayesian inversion scheme for estimating reservoir parameters from amplitude vs. offset (AVO) data was used to obtain the information about uncertainties as well as their most likely values. The results from our workflow give reliable estimates of water saturation from AVO data at small uncertainties, provided background sand porosity values and isotropic overburden properties are known. For volume of shale, the proposed workflow provides reasonable estimates even when larger uncertainties are present in AVO data
- âŠ