19 research outputs found
Very-high-precision bound-state spectroscopy near a 85Rb Feshbach resonance
We precisely measured the binding energy ( epsilon /sub bind/) of a molecular state near the Feshbach resonance in a /sup 85/Rb Bose-Einstein condensate (BEC). Rapid magnetic-field pulses induced coherent atom-molecule oscillations in the BEC. We measured the oscillation frequency as a function of B field and fit the data to a coupled-channel model. Our analysis constrained the Feshbach resonance position [155.041(18) G], width [10.71(2) G], and background scattering length [-443(3)a/sub 0/] and yielded new values for the Rb interaction parameters. These results improved our estimate for the stability condition of an attractive BEC. We also found evidence for a mean-field shift to epsilon /sub bind
Dynamic depletion in a Bose condensate via a sudden increase of the scattering length
We examine the time-dependent quantum depletion of a trapped Bose condensate
arising from a rapid increase of the scattering length. Our solution indicates
that a significant buildup of incoherent atoms can occur within a
characteristic time short compared with the harmonic trap period. We discuss
how the depletion density and the characteristic time depend on the physical
parameters of the condensate
Report on Experiment E349: Quasifree Radiative Capture in the Deuteron
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Microscopic theory of atom-molecule oscillations in a Bose-Einstein condensate
In a recent experiment at JILA [E.A. Donley et al., Nature (London) 417, 529
(2002)] an initially pure condensate of Rb-85 atoms was exposed to a specially
designed time dependent magnetic field pulse in the vicinity of a Feshbach
resonance. The production of new components of the gas as well as their
oscillatory behavior have been reported. We apply a microscopic theory of the
gas to identify these components and determine their physical properties. Our
time dependent studies allow us to explain the observed dynamic evolution of
all fractions, and to identify the physical relevance of the pulse shape. Based
on ab initio predictions, our theory strongly supports the view that the
experiments have produced a molecular condensate.Comment: 18 pages, 20 figure
Properties of a Dilute Bose Gas near a Feshbach Resonance
In this paper, properties of a homogeneous Bose gas with a Feshbach resonance
are studied in the dilute region at zero temperature. The stationary state
contains condensations of atoms and molecules. The ratio of the molecule
density to the atom density is . There are two types of excitations,
molecular excitations and atomic excitations. Atomic excitations are gapless,
consistent with the traditional theory of a dilute Bose gas. The molecular
excitation energy is finite in the long wavelength limit as observed in recent
experiments on Rb. In addition, the decay process of the condensate is
studied. The coefficient of the three-body recombination rate is about 140
times larger than that of a Bose gas without a Feshbach resonance, in
reasonably good agreement with the experiment on Na.Comment: 11 pages, 1 figure, comparison between the calculated three-body
recombination rate and the experimental data for Na system has been adde
Characterization of elastic scattering near a Feshbach resonance in rubidium 87
The s-wave scattering length for elastic collisions between 87Rb atoms in the
state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near
1007 G. Experimentally, the scattering length is determined from the mean-field
driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field.
The scattering length is measured as a function of the magnetic field and
agrees with the theoretical expectation. The position and the width of the
resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar
Bose-Einstein condensate collapse: a comparison between theory and experiment
We solve the Gross-Pitaevskii equation numerically for the collapse induced
by a switch from positive to negative scattering lengths. We compare our
results with experiments performed at JILA with Bose-Einstein condensates of
Rb-85, in which the scattering length was controlled using a Feshbach
resonance. Building on previous theoretical work we identify quantitative
differences between the predictions of mean-field theory and the results of the
experiments. Besides the previously reported difference between the predicted
and observed critical atom number for collapse, we also find that the predicted
collapse times systematically exceed those observed experimentally. Quantum
field effects, such as fragmentation, that might account for these
discrepancies are discussed.Comment: 4 pages, 2 figure
Weakly bound atomic trimers in ultracold traps
The experimental three-atom recombination coefficients of the atomic states
Na, Rb and Rb,
together with the corresponding two-body scattering lengths, allow predictions
of the trimer bound state energies for such systems in a trap. The
recombination parameter is given as a function of the weakly bound trimer
energies, which are in the interval for large
positive scattering lengths, . The contribution of a deep-bound state to our
prediction, in the case of Rb, for a particular trap, is
shown to be relatively small.Comment: 5 pages, 1 figur
Stability of the trapped nonconservative Gross-Pitaevskii equation with attractive two-body interaction
The dynamics of a nonconservative Gross-Pitaevskii equation for trapped
atomic systems with attractive two-body interaction is numerically
investigated, considering wide variations of the nonconservative parameters,
related to atomic feeding and dissipation. We study the possible limitations of
the mean field description for an atomic condensate with attractive two-body
interaction, by defining the parameter regions where stable or unstable
formation can be found. The present study is useful and timely considering the
possibility of large variations of attractive two-body scattering lengths,
which may be feasible in recent experiments.Comment: 6 pages, 5 figures, submitted to Physical Review
Scaling predictions for radii of weakly bound triatomic molecules
The mean-square radii of the molecules He, HeLi,
HeLi and HeNa are calculated using a three-body model
with contact interactions. They are obtained from a universal scaling function
calculated within a renormalized scheme for three particles interacting through
pairwise Dirac-delta interaction. The root-mean-square distance between two
atoms of mass in a triatomic molecule are estimated to be of de order of
, where is the dimer and the
trimer binding energies, and is a constant (varying from
to ) that depends on the ratio between and . Considering
previous estimates for the trimer energies, we also predict the sizes of
Rubidium and Sodium trimers in atomic traps.Comment: 7 pages, 2 figure