972 research outputs found
Optimal States for Bell inequality Violations using Quadrature Phase Homodyne Measurements
We identify what ideal correlated photon number states are to required to
maximize the discrepancy between local realism and quantum mechanics when a
quadrature homodyne phase measurement is used. Various Bell inequality tests
are considered.Comment: 6 pages, 5 Figure
New optimal tests of quantum nonlocality
We explore correlation polytopes to derive a set of all Boole-Bell type
conditions of possible classical experience which are both maximal and
complete. These are compared with the respective quantum expressions for the
Greenberger-Horne-Zeilinger (GHZ) case and for two particles with spin state
measurements along three directions.Comment: 10 page
Comment on "Proposed molecular test of local hidden-variables theories"
Lo and Shimony have proposed a molecular test of local hidden-variables theories, which should eliminate a loophole arising in all tests dealing with photons. It is pointed out that the proposed correction for accidental coincidences invalidates the test. Conditions for the reliability of the experiment are stated
Multi-Prover Commitments Against Non-Signaling Attacks
We reconsider the concept of multi-prover commitments, as introduced in the
late eighties in the seminal work by Ben-Or et al. As was recently shown by
Cr\'{e}peau et al., the security of known two-prover commitment schemes not
only relies on the explicit assumption that the provers cannot communicate, but
also depends on their information processing capabilities. For instance, there
exist schemes that are secure against classical provers but insecure if the
provers have quantum information processing capabilities, and there are schemes
that resist such quantum attacks but become insecure when considering general
so-called non-signaling provers, which are restricted solely by the requirement
that no communication takes place.
This poses the natural question whether there exists a two-prover commitment
scheme that is secure under the sole assumption that no communication takes
place; no such scheme is known.
In this work, we give strong evidence for a negative answer: we show that any
single-round two-prover commitment scheme can be broken by a non-signaling
attack. Our negative result is as bad as it can get: for any candidate scheme
that is (almost) perfectly hiding, there exists a strategy that allows the
dishonest provers to open a commitment to an arbitrary bit (almost) as
successfully as the honest provers can open an honestly prepared commitment,
i.e., with probability (almost) 1 in case of a perfectly sound scheme. In the
case of multi-round schemes, our impossibility result is restricted to
perfectly hiding schemes.
On the positive side, we show that the impossibility result can be
circumvented by considering three provers instead: there exists a three-prover
commitment scheme that is secure against arbitrary non-signaling attacks
The wave nature of biomolecules and fluorofullerenes
We demonstrate quantum interference for tetraphenylporphyrin, the first
biomolecule exhibiting wave nature, and for the fluorofullerene C60F48 using a
near-field Talbot-Lau interferometer. For the porphyrins, which are
distinguished by their low symmetry and their abundant occurence in organic
systems, we find the theoretically expected maximal interference contrast and
its expected dependence on the de Broglie wavelength. For C60F48 the observed
fringe visibility is below the expected value, but the high contrast still
provides good evidence for the quantum character of the observed fringe
pattern. The fluorofullerenes therefore set the new mark in complexity and mass
(1632 amu) for de Broglie wave experiments, exceeding the previous mass record
by a factor of two.Comment: 5 pages, 4 figure
Qubits from Number States and Bell Inequalities for Number Measurements
Bell inequalities for number measurements are derived via the observation
that the bits of the number indexing a number state are proper qubits.
Violations of these inequalities are obtained from the output state of the
nondegenerate optical parametric amplifier.Comment: revtex4, 7 pages, v2: results identical but extended presentation,
v3: published versio
How much contextuality?
The amount of contextuality is quantified in terms of the probability of the
necessary violations of noncontextual assignments to counterfactual elements of
physical reality.Comment: 5 pages, 3 figure
Causality, Joint measurement and Tsirelson's bound
Tsirelson showed that is the maximum value that CHSH expression
can take for quantum-correlations [B. S.Tsirelson, Lett. Math. Phys, 4 (1980)
93]. This bound simply follows from the algebra of observables. Recently by
exploiting the physical structure of quantum mechanics like unitarity and
linearity, Buhrman and Massar [H. Buhrman and S.Massar, Phys. Rev. A, 72 (2005)
052103] have established that violation of Tsirelson's bound in quantum
mechanics will imply signalling. We prove the same with the help of realistic
joint measurement in quantum mechanics and a Bell's inequality which has been
derived under the assumption of existence of joint measurement and no
signalling condition.Comment: 8 page
Decoherence of matter waves by thermal emission of radiation
Emergent quantum technologies have led to increasing interest in decoherence
- the processes that limit the appearance of quantum effects and turn them into
classical phenomena. One important cause of decoherence is the interaction of a
quantum system with its environment, which 'entangles' the two and distributes
the quantum coherence over so many degrees of freedom as to render it
unobservable. Decoherence theory has been complemented by experiments using
matter waves coupled to external photons or molecules, and by investigations
using coherent photon states, trapped ions and electron interferometers. Large
molecules are particularly suitable for the investigation of the
quantum-classical transition because they can store much energy in numerous
internal degrees of freedom; the internal energy can be converted into thermal
radiation and thus induce decoherence. Here we report matter wave
interferometer experiments in which C70 molecules lose their quantum behaviour
by thermal emission of radiation. We find good quantitative agreement between
our experimental observations and microscopic decoherence theory. Decoherence
by emission of thermal radiation is a general mechanism that should be relevant
to all macroscopic bodies.Comment: 5 pages, 4 figure
The XFEM with an Explicit-Implicit Crack Description for Hydraulic Fracture Problems
The Extended Finite Element Method (XFEM) approach is applied to the coupled problem of fluid flow, solid deformation, and fracture propagation. The XFEM model description of hydraulic fracture propagation is part of a joint project in which the developed numerical model will be verified against large-scale laboratory experiments. XFEM forms an important basis towards future combination with heat and mass transport simulators and extension to more complex fracture systems. The crack is described implicitly using three level-sets to evaluate enrichment functions. Additionally, an explicit crack representation is used to update the crack during propagation. The level-set functions are computed exactly from the explicit representation. This explicit/implicit representation is applied to a fluid-filled crack in an impermeable, elastic solid and compared to the early-time solution of a plane-strain hydraulic fracture problem with a fluid lag
- …