6 research outputs found

    Solar cycle and seasonal variations of the GPS phase scintillation at high latitudes

    No full text
    We present the long-term statistics of the GPS phase scintillation in the polar region (70°–82° magnetic latitude) by using the GPS scintillation data from Ny-Ålesund for the period 2010–2017. Ny-Ålesund is ideally located to observe GPS scintillations modulated by the ionosphere cusp dynamics. The results show clear solar cycle and seasonal variations, with the GPS scintillation occurrence rate being much higher during solar maximum than during solar minimum. The seasonal variations show that scintillation occurrence rate is low during summer and high during winter. The highest scintillation occurrence rate is around magnetic noon except for December 2014 (solar maximum) when the nightside scintillation occurrence rate exceeds the dayside one. In summer, the dayside scintillation region is weak and there is a lack of scintillations in the nightside polar cap. The most intriguing features of the seasonal variations are local minima in the scintillation occurrence rate around winter solstices. They correspond to local minima in the F2 peak electron density. The dayside scintillation region migrates equatorward from summer to winter and retreats poleward from winter to summer repetitively in a magnetic latitude range of 74°–80°. This latitudinal movement is likely due to the motion of the cusp location due to the tilt of the Earth’s magnetic field and the impact of the sunlight

    Ionospheric plasma structuring in relation to auroral particle precipitation

    No full text
    Auroral particle precipitation potentially plays the main role in ionospheric plasma structuring. The impact of auroral particle precipitation on plasma structuring is investigated using multi-point measurements from scintillation receivers and all-sky cameras from Longyearbyen, Ny-Ålesund, and Hornsund on Svalbard. This provides us with the unique possibility of studying the spatial and temporal dynamics of the aurora. Here we consider three case studies to investigate how plasma structuring is related to different auroral forms. We demonstrate that plasma structuring impacting the GNSS signals is largest at the edges of auroral forms. Here we studied two stable arcs, two dynamic auroral bands, and a spiral. Specifically for arcs, we find elevated phase scintillation index values at the poleward edge of the aurora. This is observed for auroral oxygen emissions (557.7 nm) at 150 km in the ionospheric E-region. This altitude is also used as the ionospheric piercing point for the GNSS signals as the observations remain the same regardless of different satellite elevations and azimuths. Further, there may be a time delay between the temporal evolution of aurora (e.g., commencement and fading of auroral activity) and observations of elevated phase scintillation index values. The time delay could be explained by the intense influx of particles, which increases the plasma density and causes recombination to carry on longer, which may lead to a persistence of structures – a “memory effect”. High values of phase scintillation index values can be observed even shortly after strong visible aurora and can then remain significant at low intensities of the aurora

    GPS scintillations associated with cusp dynamics and polar cap patches

    No full text
    This paper investigates the relative scintillation level associated with cusp dynamics (including precipitation, flow shears, etc.) with and without the formation of polar cap patches around the cusp inflow region by the EISCAT Svalbard radar (ESR) and two GPS scintillation receivers. A series of polar cap patches were observed by the ESR between 8:40 and 10:20 UT on December 3, 2011. The polar cap patches combined with the auroral dynamics were associated with a significantly higher GPS phase scintillation level (up to 0.6 rad) than those observed for the other two alternatives, i.e., cusp dynamics without polar cap patches, and polar cap patches without cusp aurora. The cusp auroral dynamics without plasma patches were indeed related to GPS phase scintillations at a moderate level (up to 0.3 rad). The polar cap patches away from the active cusp were associated with sporadic and moderate GPS phase scintillations (up to 0.2 rad). The main conclusion is that the worst global navigation satellite system space weather events on the dayside occur when polar cap patches enter the polar cap and are subject to particle precipitation and flow shears, which is analogous to the nightside when polar cap patches exit the polar cap and enter the auroral oval

    Ionospheric plasma irregularities studied with Swarm satellites

    No full text
    To study and characterise the ionospheric plasma irregularities at all latitudes, one can employ in-situ measurements by satellites in polar orbits, such as the European Space Agency’s Swarm mission. Based on the Swarm data, we have developed the Ionospheric Plasma IRregularities (IPIR) product for a global characterisation of ionospheric irregularities along the satellite track at all latitudes. This new Level-2 data product combines complementary datasets from the Swarm satellites: the electron density from the electric field instrument, the GPS data from the onboard GPS receiver, and the magnetic field data from the onboard magnetometers. This can be used as a new tool for global studies of ionospheric irregularities and turbulence

    Climatology and modeling of ionospheric irregularities over Greenland based on empirical orthogonal function method

    Get PDF
    This paper addresses the long-term climatology (over two solar cycles) of total electron content (TEC) irregularities from a polar cap station (Thule) using the rate of change of the TEC index (ROTI). The climatology reveals variabilities over different time scales, i.e., solar cycle, seasonal, and diurnal variations. These variations in different time scales can be explained by different drivers/contributors. The solar activity (represented by the solar radiation index F10.7P) dominates the longest time scale variations. The seasonal variations are controlled by the interplay of the energy input into the polar cap ionosphere and the solar illumination that damps the amplitude of ionospheric irregularities. The diurnal variations (with respect to local time) are controlled by the relative location of the station with respect to the auroral oval. We further decompose the climatology of ionospheric irregularities using the empirical orthogonal function (EOF) method. The first four EOFs could reflect the majority (99.49%) of the total data variability. A climatological model of ionospheric irregularities is developed by fitting the EOF coefficients using three geophysical proxies (namely, F10.7P, Bt, and Dst). The data-model comparison shows satisfactory results with a high Pearson correlation coefficient and adequate errors. Additionally, we modeled the historical ROTI during the modern grand maximum dating back to 1965 and made the prediction during solar cycle 25. In such a way, we can directly compare the climatic variations of the ROTI activity across six solar cycles

    Statistical Models of the Variability of Plasma in the Topside Ionosphere:2. Performance assessment

    Get PDF
    Statistical models of the variability of plasma in the topside ionosphere based on the Swarm data have been developed in the “Swarm Variability of Ionospheric Plasma” (Swarm-VIP) project within the European Space Agency’s Swarm+4D-Ionosphere framework. The models can predict the electron density, its gradients for three horizontal spatial scales – 20, 50 and 100 km – along the North-South direction and the level of the density fluctuations. Despite being developed by leveraging on Swarm data, the models provide predictions that are independent of these data, having a global coverage, fed by various parameters and proxies of the helio-geophysical conditions. Those features make the Swarm-VIP models useful for various purposes, which include the possible support for already available ionospheric models and proxy of the effect of ionospheric irregularities of the medium scales that affect the signals emitted by Global Navigation Satellite Systems (GNSS). The formulation, optimisation and validation of the Swarm-VIP models are reported in Paper 1 (Wood et al. 2024. J Space Weather Space Clim. in press). This paper describes the performance assessment of the models, by addressing their capability to reproduce the known climatological variability of the modelled quantities, and the ionospheric weather as depicted by ground-based GNSS, as a proxy for the ionospheric effect on GNSS signals. Additionally, we demonstrate that, under certain conditions, the model can better reproduce the ionospheric variability than a physics-based model, namely the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM)
    corecore