36 research outputs found
Interhemispheric asymmetries of neutral upwelling and ion upflow
This work addresses interhemispheric differences in cusp-related neutral density enhancements. The focus is on enhancements that are driven by Poleward Moving Auroral Forms (PMAF), which provide a repetitive sequence of soft electron precipitation to the ionosphere. Because the time-scales of the resultant electron heating, ion upflow and neutral upwelling range from a few seconds to tens of minutes, i.e., longer than the time required for the thermosphere to return to its relaxed state, each subsequent PMAF encounters different initial conditions. With this in mind, our study investigates the role of a dark versus daylight ionosphere, using 3 different scenarios. The first case compares this effect during solar minimum at Longyearbyen, Svalbard, an ideal location for observing cusp dynamics. The second case addresses solar maximum at Longyearbyen and the third case compares Longyearbyen to its magnetically conjugate Zhongshan Station in Antarctica. We conclude 1) for each of the 3 scenarios ion upflow speeds, neutral upwelling speeds and neutral density enhancements are all significantly greater in a dark ionosphere, by perhaps as much as a factor or 2 or 3, relative to a sunlit ionosphere, 2) that upflowing ions are the driver of neutral upwelling via ion-neutral collisions (momentum transfer), with fast-moving ions transferring upward momentum to slow-moving neutrals, and 3) the ratios of neutral upflow speeds to ion upflow speeds, vnSunlit/viSunlit is the order of 0.07 for all stations (at 800 km) in the first and second cases studied, but only 0.02 at Zhongshan in the 3rd case studied, a factor of âź3 less than the other locations. This is thought to be due to an increased thermospheric density at Zhongshan, which essentially provides a greater total mass for the upflowing ions to lift
Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water
International audienceMethanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO from post-combustion capture and autothermal reforming of natural gas or biogas. Underground gas storage of hydrogen and oxygen was used in connection with the electrolysis to enable the electrolyser to follow the variations in the power produced by renewables. Six plant configurations, each with a different syngas production method, were compared. The plants achieve methanol exergy efficiencies of 59-72%, the best from a configuration incorporating autothermal reforming of biogas and electrolysis of water for syngas production. The different processes in the plants are highly heat integrated, and the low-temperature waste heat is used for district heat production. This results in high total energy efficiencies (~90%) for the plants. The specific methanol costs for the six plants are in the range 11.8-25.3 âŹ/GJ. The lowest cost is obtained by a plant using electrolysis of water, gasification of biomass and autothermal reforming of natural gas for syngas production
Statistical Models of the Variability of Plasma in the Topside Ionosphere:2. Performance assessment
Statistical models of the variability of plasma in the topside ionosphere based on the Swarm data have been developed in the âSwarm Variability of Ionospheric Plasmaâ (Swarm-VIP) project within the European Space Agencyâs Swarm+4D-Ionosphere framework. The models can predict the electron density, its gradients for three horizontal spatial scales â 20, 50 and 100 km â along the North-South direction and the level of the density fluctuations. Despite being developed by leveraging on Swarm data, the models provide predictions that are independent of these data, having a global coverage, fed by various parameters and proxies of the helio-geophysical conditions. Those features make the Swarm-VIP models useful for various purposes, which include the possible support for already available ionospheric models and proxy of the effect of ionospheric irregularities of the medium scales that affect the signals emitted by Global Navigation Satellite Systems (GNSS). The formulation, optimisation and validation of the Swarm-VIP models are reported in Paper 1 (Wood et al. 2024. J Space Weather Space Clim. in press). This paper describes the performance assessment of the models, by addressing their capability to reproduce the known climatological variability of the modelled quantities, and the ionospheric weather as depicted by ground-based GNSS, as a proxy for the ionospheric effect on GNSS signals. Additionally, we demonstrate that, under certain conditions, the model can better reproduce the ionospheric variability than a physics-based model, namely the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM)
Effectiveness of Public Innovation Support in Europe. Does Public Support Foster Turnover, Employment and Labour Productivity?
In the European Union (EU), twenty Member States offer public innovation support for private research and development (R&D) activities through either subsidies or a combination of tax cuts and subsidies. Existing studies show ambiguous results regarding the effectiveness of public innovation support in different countries. Accordingly, following a description of the current public innovation framework in Europe, this paper analyses data from the European Community Innovation Survey concerning the effectiveness of public support. The measures chosen relate to changes in turnover as well as the number of employees and labour productivity (measured as turnover per employee) between 2006 and 2008. The paper finds a positive influence of public innovation support on labour productivity in an innovating company, a negative influence on turnover changes and a negative yet not significant influence on the development of employment. The influences of these factors are very weak, whereas other coefficients such as the money spent on innovative activities clearly show positive effects for all three indicators
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data