7,759 research outputs found
Ceramic coating effect on liner metal temperatures of film-cooled annular combustor
An experimental and analytical investigation was conducted to determine the effect of a ceramic coating on the average metal temperatures of full annular, film cooled combustion chamber liner. The investigation was conducted at pressures from 0.50 to 0.062. At all test conditions, experimental results indicate that application of a ceramic coating will result in significantly lower wall temperatures. In a simplified heat transfer analysis, agreement between experimental and calculated liner temperatures was achieved. Simulated spalling of a small portion of the ceramic coating resulted in only small increases in liner temperature because of the thermal conduction of heat from the hotter, uncoated liner metal
Analysis and acoustooptical measurements of bulk and surface acoustic wave fields
The development of multielement ultrasonic transducers having full field amplitude and phase control is discussed. In addition, the measurement of the surface particle displacement caused by an idealized impulse load on the surface, the three dimensional mapping of acoustic fields using optical scanning techniques, and the measurement of two dimensional stress distributions using embedded optical fiber sensors are addressed
Infrared cutoffs and the adiabatic limit in noncommutative spacetime
We discuss appropriate infrared cutoffs and their adiabatic limit for field
theories on the noncommutative Minkowski space in the Yang-Feldman formalism.
In order to do this, we consider a mass term as interaction term. We show that
an infrared cutoff can be defined quite analogously to the commutative case and
that the adiabatic limit of the two-point function exists and coincides with
the expectation, to all orders.Comment: 19 page
The Panchromatic Starburst Intensity Limit At Low And High Redshift
The integrated bolometric effective surface brightness S_e distributions of
starbursts are investigated for samples observed in 1. the rest frame
ultraviolet (UV), 2. the far-infrared and H-alpha, and 3. 21cm radio continuum
emission. For the UV sample we exploit a tight empirical relationship between
UV reddening and extinction to recover the bolometric flux. Parameterizing the
S_e upper limit by the 90th percentile of the distribution, we find a mean
S_{e,90} = 2.0e11 L_{sun}/kpc^2 for the three samples, with a factor of three
difference between the samples. This is consistent with what is expected from
the calibration uncertainties alone. We find little variation in S_{e,90} with
effective radii for R_e ~ 0.1 - 10 kpc, and little evolution out to redshifts z
~ 3. The lack of a strong dependence of S_{e,90} on wavelength, and its
consistency with the pressure measured in strong galactic winds, argue that it
corresponds to a global star formation intensity limit (\dot\Sigma_{e,90} ~ 45
M_{sun}/kpc^2/yr) rather than being an opacity effect. There are several
important implications of these results: 1. There is a robust physical
mechanism limiting starburst intensity. We note that starbursts have S_e
consistent with the expectations of gravitational instability models applied to
the solid body rotation portion of galaxies. 2. Elliptical galaxies and spiral
bulges can plausibly be built with maximum intensity bursts, while normal
spiral disks can not. 3. The UV extinction of high-z galaxies is significant,
implying that star formation in the early universe is moderately obscured.
After correcting for extinction, the observed metal production rate at z ~ 3
agrees well with independent estimates made for the epoch of elliptical galaxy
formation.Comment: 31 pages Latex (aas2pp4.sty,psfig.sty), 9 figures, accepted for
publication in the Astronomical Journa
Deep space experiment to measure
Responding to calls from the National Science Foundation (NSF) for new
proposals to measure the gravitational constant , we offer an interesting
experiment in deep space employing the classic gravity train mechanism. Our
setup requires three bodies: a larger layered solid sphere with a cylindrical
hole through its center, a much smaller retroreflector which will undergo
harmonic motion within the hole and a host spacecraft with laser ranging
capabilities to measure round trip light-times to the retroreflector but
ultimately separated a significant distance away from the sphere-retroreflector
apparatus. Measurements of the period of oscillation of the retroreflector in
terms of host spacecraft clock time using existing technology could give
determinations of nearly three orders of magnitude more accurate than
current measurements here on Earth. However, significant engineering advances
in the release mechanism of the apparatus from the host spacecraft will likely
be necessary. Issues with regard to the stability of the system are briefly
addressed.Comment: 13 pp, 3 figs, accepted CQ
Measurement of ultrasonic fields in transparent media using a scanning differential interferometer
An experimental system for the detection of three dimensional acoustic fields in optically transparent media using a dual beam differential interferometer is described. In this system, two coherent, parallel, focused laser beams are passed through the specimen and the interference fringe pattern which results when these beams are combined shifts linearly by an amount which is related to the optical pathlength difference between the two beams. It is shown that for small signals, the detector output is directly proportional to the amplitude of the acoustic field integrated along the optical beam path through the specimen. A water tank and motorized optical platform were constructed to allow these dual beams to be scanned through an ultrasonic field generated by a piezoelectric transducer at various distances from the transducer. Scan data for the near, Fresnel, and far zones of a uniform, circular transducer are presented and an algorithm for constructing the radial field profile from this integrated optical data, assuming cylindrical symmetry, is described
Optical fiber sensors for materials and structures characterization
The final technical report on Optical Fiber Sensors for Materials and Structures Characterization, covering the period August 1990 through August 1991 is presented. Research programs in the following technical areas are described; sapphire optical fiber sensors; vibration analysis using two-mode elliptical core fibers and sensors; extrinsic Fabry-Perot interferometer development; and coatings for fluorescent-based sensor. Research progress in each of these areas was substantial, as evidenced by the technical publications which are included as appendices
When the Earth trembles in the americas: the experience of haiti and chile 2010.
The response of the nephrological community to the Haiti and Chile earthquakes which occurred in the first months of 2010 is described. In Haiti, renal support was organized by the Renal Disaster Relief Task Force (RDRTF) of the International Society of Nephrology (ISN) in close collaboration with Médecins Sans Frontières (MSF), and covered both patients with acute kidney injury (AKI) and patients with chronic kidney disease (CKD). The majority of AKI patients (19/27) suffered from crush syndrome and recovered their kidney function. The remaining 8 patients with AKI showed acute-to-chronic renal failure with very low recovery rates. The intervention of the RDRTF-ISN involved 25 volunteers of 9 nationalities, lasted exactly 2 months, and was characterized by major organizational difficulties and problems to create awareness among other rescue teams regarding the availability of dialysis possibilities. Part of the Haitian patients with AKI reached the Dominican Republic (DR) and received their therapy there. The nephrological community in the DR was able to cope with this extra patient load. In both Haiti and the DR, dialysis treatment was able to be prevented in at least 40 patients by screening and adequate fluid administration. Since laboratory facilities were destroyed in Port-au-Prince and were thus lacking during the first weeks of the intervention, the use from the very beginning on of a point-of-care device (i-STAT®) was very efficient for the detection of aberrant kidney function and electrolyte parameters. In Chile, nephrological problems were essentially related to difficulties delivering dialysis treatment to CKD patients, due to the damage to several units. This necessitated the reallocation of patients and the adaptation of their schedules. The problems could be handled by the local nephrologists. These observations illustrate that local and international preparedness might be life-saving if renal problems occur in earthquake circumstances
Quantization of maximally-charged slowly-moving black holes
We discuss the quantization of a system of slowly-moving extreme
Reissner-Nordstrom black holes. In the near-horizon limit, this system has been
shown to possess an SL(2,R) conformal symmetry. However, the Hamiltonian
appears to have no well-defined ground state. This problem can be circumvented
by a redefinition of the Hamiltonian due to de Alfaro, Fubini and Furlan (DFF).
We apply the Faddeev-Popov quantization procedure to show that the Hamiltonian
with no ground state corresponds to a gauge in which there is an obstruction at
the singularities of moduli space requiring a modification of the quantization
rules. The redefinition of the Hamiltonian a la DFF corresponds to a different
choice of gauge. The latter is a good gauge leading to standard quantization
rules. Thus, the DFF trick is a consequence of a standard gauge-fixing
procedure in the case of black hole scattering.Comment: Corrected errors in the gauge-fixing procedur
Imbedded Optical Fiber Sensor of Differential Strain in Composites
Fiber sensors have specifically been applied to the quantitative nondestructive characterization of materials for several years [1–3]. Due to the inherent similarity of unjacketed glass-on-glass optical fibers and individual graphite fibers in graphite/epoxy composites in particular, a number of investigators have considered the use of optical fibers as sensors which may be imbedded directly within composite laminae. The effects of temperature and strain integrated along the length of the sensor fiber in a composite specimen can be determined using a variety of simple methods. Spatial resolution of such quantities along the imbedded fiber in length may be obtained using several more complicated distributed fiber sensing techniques. Strain tensor quantities may be determined by both presuming accurate models of the applied stress and knowing the photoelastic and mechanical properties of the imbedded fiber
- …