219 research outputs found
Edge vulnerability in neural and metabolic networks
Biological networks, such as cellular metabolic pathways or networks of
corticocortical connections in the brain, are intricately organized, yet
remarkably robust toward structural damage. Whereas many studies have
investigated specific aspects of robustness, such as molecular mechanisms of
repair, this article focuses more generally on how local structural features in
networks may give rise to their global stability. In many networks the failure
of single connections may be more likely than the extinction of entire nodes,
yet no analysis of edge importance (edge vulnerability) has been provided so
far for biological networks. We tested several measures for identifying
vulnerable edges and compared their prediction performance in biological and
artificial networks. Among the tested measures, edge frequency in all shortest
paths of a network yielded a particularly high correlation with vulnerability,
and identified inter-cluster connections in biological but not in random and
scale-free benchmark networks. We discuss different local and global network
patterns and the edge vulnerability resulting from them.Comment: 8 pages, 4 figures, to appear in Biological Cybernetic
Mapping the Connectome: Multi-Level Analysis of Brain Connectivity
Background and scope The brain contains vast numbers of interconnected neurons that constitute anatomical and functional networks. Structural descriptions of neuronal network elements and connections make up the “connectome ” of the brain (Hagmann, 2005; Sporns et al., 2005; Sporns, 2011), and are important for understanding normal brain function and disease-related dysfunction. A long-standing ambition of the neuroscience community has been to achieve complete connectome maps for the human brain as well as the brains of non-human primates, rodents, and other species (Bohland et al., 2009; Hagmann et al., 2010; Van Essen and Ugurbil, 2012). A wide repertoire of experimental tools is currently available to map neural connectivity at multiple levels, from the tracing of mesoscopic axonal connections and the delineation of white matter tracts (Saleem et al., 2002; Van der Linden et al., 2002; Sporns et al., 2005; Schmahmann et al., 2007; Hagmann et al., 2010), the mappin
Perspective: network-guided pattern formation of neural dynamics
The understanding of neural activity patterns is fundamentally linked to an
understanding of how the brain's network architecture shapes dynamical
processes. Established approaches rely mostly on deviations of a given network
from certain classes of random graphs. Hypotheses about the supposed role of
prominent topological features (for instance, the roles of modularity, network
motifs, or hierarchical network organization) are derived from these
deviations. An alternative strategy could be to study deviations of network
architectures from regular graphs (rings, lattices) and consider the
implications of such deviations for self-organized dynamic patterns on the
network. Following this strategy, we draw on the theory of spatiotemporal
pattern formation and propose a novel perspective for analyzing dynamics on
networks, by evaluating how the self-organized dynamics are confined by network
architecture to a small set of permissible collective states. In particular, we
discuss the role of prominent topological features of brain connectivity, such
as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the
notion of network-guided pattern formation with numerical simulations and
outline how it can facilitate the understanding of neural dynamics
Predicting the connectivity of primate cortical networks from topological and spatial node properties
The organization of the connectivity between mammalian cortical areas has
become a major subject of study, because of its important role in scaffolding
the macroscopic aspects of animal behavior and intelligence. In this study we
present a computational reconstruction approach to the problem of network
organization, by considering the topological and spatial features of each area
in the primate cerebral cortex as subsidy for the reconstruction of the global
cortical network connectivity. Starting with all areas being disconnected,
pairs of areas with similar sets of features are linked together, in an attempt
to recover the original network structure. Inferring primate cortical
connectivity from the properties of the nodes, remarkably good reconstructions
of the global network organization could be obtained, with the topological
features allowing slightly superior accuracy to the spatial ones. Analogous
reconstruction attempts for the C. elegans neuronal network resulted in
substantially poorer recovery, indicating that cortical area interconnections
are relatively stronger related to the considered topological and spatial
properties than neuronal projections in the nematode. The close relationship
between area-based features and global connectivity may hint on developmental
rules and constraints for cortical networks. Particularly, differences between
the predictions from topological and spatial properties, together with the
poorer recovery resulting from spatial properties, indicate that the
organization of cortical networks is not entirely determined by spatial
constraints
Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems
It has been suggested that neural systems across several scales of
organization show optimal component placement, in which any spatial
rearrangement of the components would lead to an increase of total wiring.
Using extensive connectivity datasets for diverse neural networks combined with
spatial coordinates for network nodes, we applied an optimization algorithm to
the network layouts, in order to search for wire-saving component
rearrangements. We found that optimized component rearrangements could
substantially reduce total wiring length in all tested neural networks.
Specifically, total wiring among 95 primate (Macaque) cortical areas could be
decreased by 32%, and wiring of neuronal networks in the nematode
Caenorhabditis elegans could be reduced by 48% on the global level, and by 49%
for neurons within frontal ganglia. Wiring length reductions were possible due
to the existence of long-distance projections in neural networks. We explored
the role of these projections by comparing the original networks with minimally
rewired networks of the same size, which possessed only the shortest possible
connections. In the minimally rewired networks, the number of processing steps
along the shortest paths between components was significantly increased
compared to the original networks. Additional benchmark comparisons also
indicated that neural networks are more similar to network layouts that
minimize the length of processing paths, rather than wiring length. These
findings suggest that neural systems are not exclusively optimized for minimal
global wiring, but for a variety of factors including the minimization of
processing steps.Comment: 11 pages, 5 figure
Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex
The convoluted cortex of primates is instantly recognizable in its principal morphologic features, yet puzzling in its complex finer structure. Various hypotheses have been proposed about the mechanisms of its formation. Based on the analysis of databases of quantitative architectonic and connection data for primate prefrontal cortices, we offer support for the hypothesis that tension exerted by corticocortical connections is a significant factor in shaping the cerebral cortical landscape. Moreover, forces generated by cortical folding influence laminar morphology, and appear to have a previously unsuspected impact on cellular migration during cortical development. The evidence for a significant role of mechanical factors in cortical morphology opens the possibility of constructing computational models of cortical develoment based on physical principles. Such models are particularly relevant for understanding the relationship of cortical morphology to the connectivity of normal brains, and structurally altered brains in diseases of developmental origin, such as schizophrenia and autism
Hierarchy and Dynamics of Neural Networks
Contains fulltext :
88364.pdf (publisher's version ) (Open Access
Tracing evolution of spatio-temporal dynamics of the cerebral cortex:cortico-cortical communication dynamics
A considerable number of axons from neurons in one corti-cal area end up on other cortical areas. When one neuron in one cortical area sends an action potential to target neurons in other cortical areas, this is a realization of a cortico-cortical communication. Sensory perception, thinking, and planning of a specific behavior, all rely on the evolution of cortico-cortical communications. The action potentials change the membrane potentials in the target neurons and, in turn, may excite these neurons to produce action potentials and complex patterns of excitation and inhibition in their targets. We launched the special research topic of cortico-cortical communication dynamics to invite contributions that would cast light on such evolution of spatio-temporal action potential and membrane potential dynamics in the cerebral cortex. The contributions were theoretical models, human EEG, an
- …