219 research outputs found

    Edge vulnerability in neural and metabolic networks

    Full text link
    Biological networks, such as cellular metabolic pathways or networks of corticocortical connections in the brain, are intricately organized, yet remarkably robust toward structural damage. Whereas many studies have investigated specific aspects of robustness, such as molecular mechanisms of repair, this article focuses more generally on how local structural features in networks may give rise to their global stability. In many networks the failure of single connections may be more likely than the extinction of entire nodes, yet no analysis of edge importance (edge vulnerability) has been provided so far for biological networks. We tested several measures for identifying vulnerable edges and compared their prediction performance in biological and artificial networks. Among the tested measures, edge frequency in all shortest paths of a network yielded a particularly high correlation with vulnerability, and identified inter-cluster connections in biological but not in random and scale-free benchmark networks. We discuss different local and global network patterns and the edge vulnerability resulting from them.Comment: 8 pages, 4 figures, to appear in Biological Cybernetic

    Mapping the Connectome: Multi-Level Analysis of Brain Connectivity

    Get PDF
    Background and scope The brain contains vast numbers of interconnected neurons that constitute anatomical and functional networks. Structural descriptions of neuronal network elements and connections make up the “connectome ” of the brain (Hagmann, 2005; Sporns et al., 2005; Sporns, 2011), and are important for understanding normal brain function and disease-related dysfunction. A long-standing ambition of the neuroscience community has been to achieve complete connectome maps for the human brain as well as the brains of non-human primates, rodents, and other species (Bohland et al., 2009; Hagmann et al., 2010; Van Essen and Ugurbil, 2012). A wide repertoire of experimental tools is currently available to map neural connectivity at multiple levels, from the tracing of mesoscopic axonal connections and the delineation of white matter tracts (Saleem et al., 2002; Van der Linden et al., 2002; Sporns et al., 2005; Schmahmann et al., 2007; Hagmann et al., 2010), the mappin

    Perspective: network-guided pattern formation of neural dynamics

    Full text link
    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs, or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings, lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatiotemporal pattern formation and propose a novel perspective for analyzing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics

    Predicting the connectivity of primate cortical networks from topological and spatial node properties

    Get PDF
    The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints

    Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems

    Get PDF
    It has been suggested that neural systems across several scales of organization show optimal component placement, in which any spatial rearrangement of the components would lead to an increase of total wiring. Using extensive connectivity datasets for diverse neural networks combined with spatial coordinates for network nodes, we applied an optimization algorithm to the network layouts, in order to search for wire-saving component rearrangements. We found that optimized component rearrangements could substantially reduce total wiring length in all tested neural networks. Specifically, total wiring among 95 primate (Macaque) cortical areas could be decreased by 32%, and wiring of neuronal networks in the nematode Caenorhabditis elegans could be reduced by 48% on the global level, and by 49% for neurons within frontal ganglia. Wiring length reductions were possible due to the existence of long-distance projections in neural networks. We explored the role of these projections by comparing the original networks with minimally rewired networks of the same size, which possessed only the shortest possible connections. In the minimally rewired networks, the number of processing steps along the shortest paths between components was significantly increased compared to the original networks. Additional benchmark comparisons also indicated that neural networks are more similar to network layouts that minimize the length of processing paths, rather than wiring length. These findings suggest that neural systems are not exclusively optimized for minimal global wiring, but for a variety of factors including the minimization of processing steps.Comment: 11 pages, 5 figure

    Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex

    Get PDF
    The convoluted cortex of primates is instantly recognizable in its principal morphologic features, yet puzzling in its complex finer structure. Various hypotheses have been proposed about the mechanisms of its formation. Based on the analysis of databases of quantitative architectonic and connection data for primate prefrontal cortices, we offer support for the hypothesis that tension exerted by corticocortical connections is a significant factor in shaping the cerebral cortical landscape. Moreover, forces generated by cortical folding influence laminar morphology, and appear to have a previously unsuspected impact on cellular migration during cortical development. The evidence for a significant role of mechanical factors in cortical morphology opens the possibility of constructing computational models of cortical develoment based on physical principles. Such models are particularly relevant for understanding the relationship of cortical morphology to the connectivity of normal brains, and structurally altered brains in diseases of developmental origin, such as schizophrenia and autism

    Hierarchy and Dynamics of Neural Networks

    Get PDF
    Contains fulltext : 88364.pdf (publisher's version ) (Open Access

    Tracing evolution of spatio-temporal dynamics of the cerebral cortex:cortico-cortical communication dynamics

    Get PDF
    A considerable number of axons from neurons in one corti-cal area end up on other cortical areas. When one neuron in one cortical area sends an action potential to target neurons in other cortical areas, this is a realization of a cortico-cortical communication. Sensory perception, thinking, and planning of a specific behavior, all rely on the evolution of cortico-cortical communications. The action potentials change the membrane potentials in the target neurons and, in turn, may excite these neurons to produce action potentials and complex patterns of excitation and inhibition in their targets. We launched the special research topic of cortico-cortical communication dynamics to invite contributions that would cast light on such evolution of spatio-temporal action potential and membrane potential dynamics in the cerebral cortex. The contributions were theoretical models, human EEG, an
    corecore