7 research outputs found

    In vitro cytotoxic activity of phytosynthesized silver nanoparticles using Clematis vitalba L. (Ranunculaceae) aqueous decoction

    Get PDF
    In this study, we report a bottom-up approach for silver nanoparticles (AgNPs) synthesis using aqueous decoction of aerial parts of Clematis vitalba L. The phytosynthesized AgNPs were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, Fourier Transform-Infrared Spectroscopy (FTIR), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and Bright Field Scanning Transmission Electron Microscopy (BFSTEM). The cytogenotoxicity and phytotoxicity assays of AgNPs were assessed by using Allium test, Evans blue and 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining, root and stem growth potential, and biomass evaluation. The results revealed that AgNPs were in the size range of 1-15 nm and spherical shape. The biosynthesized AgNPs augment the mitodepressive effect, disruption of cellular metabolism, impairment of root and stem growth, and biomass reduction induced by C. vitalba aqueous extracts. These results outline the toxicological profile of the C. vitalba extracts, as well as of the phytogenerated AgNPs and provides scientific perspectives on the use of C. vitalba extracts as reducing and stabilizing agent for the phytosynthesis of metallic nanoparticles

    Photocatalytic activity of pulsed laser deposited TiO2 thin films in N-2, O-2 and CH4

    No full text
    We report on pulsed laser deposition of TiO2 films on glass substrates in oxygen, methane, nitrogen and mixture of oxygen and nitrogen atmosphere. The nitrogen incorporation into TiO2 lattice was successfully achieved, as demonstrated by optical absorption and XPS measurements. The absorption edge of the N-doped TiO2 films was red-shifted up to similar to 480 nm from 360 nm in case of undoped ones. The photocatalytic activity of TiO2 films was investigated during toxic Cr(VI) ions photoreduction to Cr(III) state in aqueous media under irradiation with visible and UV light. Under visible light irradiation, TiO2 films deposited in nitrogen atmosphere showed the highest photocatalytic activity, whereas by UV light exposure the best results were obtained for the TiO2 structures deposited in pure methane and oxygen atmosphere

    TiO 2 /ZrO 2 THIN FILMS SYNTHESIZED BY PLD IN LOW PRESSURE N-, C-AND/OR O-CONTAINING GASES: STRUCTURAL, OPTICAL AND PHOTOCATALYTIC PROPERTIES

    No full text
    Doped TiO 2 /ZrO 2 films were obtained by Pulsed Laser Deposition method under different synthesis conditions. The onset of absorption spectra was red shifted for the films obtained in N 2 containing gas mixtures, while a broad absorption in visible was observed in the case of films deposited in CH 4 atmosphere. The presence of O-Ti-N bonds revealed by XPS corresponded to the highest photocatalytic performance. XPS spectra of the samples obtained in N 2 /CH 4 gas mixtures evidenced a more effective incorporation of nitrogen in the structure due to oxygen deficiency. Nevertheless, no atomic carbon presence in the TiO 2 /ZrO 2 structures has been detected

    Tio2/zro2 thin films synthesized by pld in low pressure n-, c- and/or o-containing gases: structural, optical and photocatalytic properties

    No full text
    Doped TiO2/ZrO2 films were obtained by Pulsed Laser Deposition method under different synthesis conditions. The onset of absorption spectra was red shifted for the films obtained in N-2 containing gas mixtures, while a broad absorption in visible was observed in the case of films deposited in CH4 atmosphere. The presence of O-Ti-N bonds revealed by XPS corresponded to the highest photocatalytic performance. XPS spectra of the samples obtained in N-2/CH4 gas mixtures evidenced a more effective incorporation of nitrogen in the structure due to oxygen deficiency. Nevertheless, no atomic carbon presence in the TiO2/ZrO2 structures has been detected

    Genoprotective, antioxidant, antifungal and anti-inflammatory evaluation of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills

    No full text
    Abstract Background Juniperus communis L. represents a multi-purpose crop used in the pharmaceutical, food, and cosmetic industry. Several studies present the possible medicinal properties of different Juniperus taxa native to specific geographical area. The present study aims to evaluate the genoprotective, antioxidant, antifungal and anti-inflammatory potential of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. Methods The prepared hydroethanolic extract of Juniperus communis L. was characterized by GC-MS, HPLC, UV-Vis spectrometry and phytochemical assays. The antioxidant potential was evaluated using the DPPH assay, the antifungal effect was studied on Aspergillus niger ATCC 15475 and Penicillium hirsutum ATCC 52323, while the genoprotective effect was evaluated using the Allium cepa assay. The anti-inflammatory effect was evaluated in two inflammation experimental models (dextran and kaolin) by plethysmometry. Male Wistar rats were treated by gavage with distilled water (negative control), the microemulsion (positive control), diclofenac sodium aqueous solution (reference) and microemulsions containing juniper extract (experimental group). The initial paw volume and the paw volumes at 1, 2, 3, 4, 5 and 24 h were measured. Results Total terpenoids, phenolics and flavonoids were estimated to be 13.44 ± 0.14 mg linalool equivalent, 19.23 ± 1.32 mg gallic acid equivalent, and 5109.6 ± 21.47 mg rutin equivalent per 100 g of extract, respectively. GC-MS characterization of the juniper extract identified 57 volatile compounds in the sample, while the HPLC analysis revealed the presence of the selected compounds (α-pinene, chlorogenic acid, rutin, apigenin, quercitin). The antioxidant potential of the crude extract was found to be 81.63 ± 0.38% (measured by the DPPH method). The results of the antifungal activity assay (for Aspergillus niger and Penicillium hirsutum) were 21.6 mm, respectively 17.2 mm as inhibition zone. Test results demonstrated the genoprotective potential of J. communis undiluted extract, inhibiting the mitodepressive effect of ethanol. The anti-inflammatory action of the juniper extract, administered as microemulsion in acute-dextran model was increased when compared to kaolin subacute inflammation induced model. Conclusion The hydroalcoholic extract obtained from wild-growing Juniperus communis native to Romanian southern sub-Carpathian hills has genoprotective, antioxidant, antifungal and anti-inflammatory properties
    corecore